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(7) ABSTRACT

Sparkman

A buffer cache management structure, or metadata, for a
computer system such as a NUMA (non-uniform memory
access) machine, wherein physical main memory is distrib-
uted and shared among separate memories. The memories
reside on separate nodes that are connected by a system
interconnect. The buffer cache metadata is partitioned into
portions that each include a set of one or more management
data structures such as hash queues that keep track of disk
blocks cached in the buffer cache. Each set of management
data structures is stored entirely within one memory. A first
process performs operations on the buffer cache metadata by
determining, from an attribute of a data block requested by
the process, in which memory a portion of the metadata
associated with the data block is stored. The process then
determines if the memory containing the metadata portion is
local to the process. If so, the first process performs the
operation. If not, the first process requests that a second
process that is local to the memory perform the operation.
The second process then performs the operation and notifies
the first process of the operation results.
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DISK BLOCK CACHE MANAGEMENT FOR
A DISTRIBUTED SHARED MEMORY
COMPUTER SYSTEM

FIELD OF THE INVENTION

This invention relates generally to cache management for
computer systems. More particularly, this invention relates
to management of disk blocks cached in the memory of a
distributed shared memory computer system. An example of
such a computer system is a NUMA (non-uniform memory
access) machine.

BACKGROUND OF THE INVENTION

In a computer system, one of the tasks of the operating
system kernel is to maintain files such as data on mass
storage devices (such as disks) so that processes executing
in the computer can properly access these files. For example,
when a process,wants to read data from a file stored on disk,
the kernel brings the data into the main memory of the
computer where the process+an access it. Similarly, the
kernel often writes data in main memory back to disk to save
the data.

The kernel could read and write directly to and from the
disk for all file system accesses, but system response time
and throughput would be poor because disk access times are
quite slow. The kernel therefore attempts to minimize the
frequency of disk access by keeping a pool of internal data
buffers in main memory, called the buffer cache. A typical
buffer cache and its management are described in The
Design of the UNIX Operating System, by Maurice J. Bach
(Prentice-Hall 1986), which is incorporated by reference
herein and summarized below. Traditional UNIX systems,
for example, use a dedicated area in memory called the
block buffer cache to cache blocks accessed through the file
system; the virtual memory system caches process text and
data pages separately. Modern UNIX systems integrate the
buffer cache within the virtual memory system.

When reading blocks of data from disk, the kernel
attempts to read first from the buffer cache. If the data is
already in the cache, the kernel does not have to read from
disk. If the data is not in the cache, however, the kernel reads
the data from disk and caches it, using an algorithm that tries
to save as much good data in the cache as possible.
Similarly, the kernel caches data that it writes to disk so that
the data is available in memory if the kernel later tries to read
it.

During system initialization, the kernel allocates space for
a number of buffers, configurable according to memory size
and system performance constraints. A buffer consists of two
parts: a data array of memory that contains data blocks from
disk and a buffer header that identifies a particular data array.
Because there is a one-to-one mapping of buffer headers to
data arrays, both parts are often referred to in the art as a
“buffer.” The context of a particular reference should make
clear which part is being discussed. The data in a buffer
corresponds to the data in a logical disk block in a file, and
the kernel identifies a buffer’s contents by examining fields
in the buffer header. The buffer is the in memory copy of the
disk block; the contents of the disk block map into the buffer,
but the mapping is temporary and exists only until the kernel
decides to map another disk block into that particular buffer.

The buffer header contains a number of fields and pointers
that provide information about the buffer and its contents.
Several fields uniquely identify the buffer such as by the file
system and block number of the data on disk. Another field
gives the status of the buffer such as locked, valid, etc. A
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2

pointer points to the associated memory array that stores the
data. The buffer header also contains two sets of pointers
used by buffer allocation algorithms to maintain the overall
structure of the buffer pool.

One of these sets of pointers relates to a free list of buffers
maintained by the kernel. Data is cached in the buffer pool
according to a least recently used algorithm. After the kernel
allocates a buffer to a disk block, it cannot use the buffer for
another block until all other buffers have been used more
recently. The free list preserves the least recently used order.
The free list is typically implemented as a circular, doubly
linked list of buffer headers with a dummy buffer header that
marks its beginning and end; the forward and backward
pointers in the header link the buffer to the list. Every buffer
is put on the free list when the system is booted. The kernel
normally removes a buffer from the head of the free list
when it needs to allocate a buffer for a disk block and places
a buffer at the tail of the free list when the buffer is available
for allocation. Hence, the buffers that are closer to the head
of the free list have not been used as recently as those that
are further from the head.

The other set of pointers is used for efficient searching of
the buffer pool for a particular buffer. Rather than simply
group all of the buffers into the buffer pool, the kernel
organizes the buffers into separate queues, hashed as a
function of a disk block attribute such as its address (e.g., file
and block offset). The kernel links the buffers on a hash
queue into a circular, doubly linked list using the forward
and backward pointers in the set. A hashing function is
chosen that uniformly distributes the buffers across the set of
hash queues, such as a modulo function.

FIG. 1 shows a cache management data structure (also
known as buffer cache metadata) that includes headers of the
hash queues on the left side and associated rows of buffer
headers for each hash queue on the right side. The queue
headers are also known as “buckets” and the queues as
“chains” or “lists” of buffer header elements. With a hashing
function of modulo 4, all buffers whose disk block numbers
are multiple of 4 are elements of the first hash queue, buffers
whose disk block numbers have a remainder of 1 are
elements of the second hash queue, etc. FIG. 1 also shows
how the free list is implemented through the doubly linked
list. Buffer 3 is at the head of the free list and buffer 10 is at
the tail.

In a traditional implementation each buffer in the buffer
cache exists on a hash queue. A buffer may also be on the
free list if its status is free. Because a buffer may be
simultaneously on a hash queue and on the free list, the
kernel has two ways to find it. It searches the hash queue if
it is looking for a particular buffer, and it removes a buffer
from the free list if it needs a buffer for storing a disk block.

Although buffer caches were initially used in operating
systems, they are not limited to such. They also find use in
application programs including database management sys-
tems (DBMS) or database servers. These servers manage
large databases of information (data) such as product
information, employee information, or airline reservations.
DBMSs are often configured as a client/server model with a
database of information and a database server as the back
end and inexpensive desktop computers as front ends, or
clients. The client runs user-friendly applications that enable
a user to communicate with the database server. User
requests to a database server are called queries.

In a database the information is physically stored in
several files but is logically organized into tables of related
data such as employees, products, etc. A table consists of a
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set of rows and columns. A column represents a category of
data, such as Employee Name, while a row represents
specific instances of those categories—for example, all of
the data for one employee. Atable is a logical area of storage
made up of data segments that are allocated by the database
server for storing table data. For example, in an employee
table, the data segment stores such information as the names
of the employees, their hire dates, and so forth. A data
segment, in turn, is made up of data blocks. A data block is
the smallest logical unit of storage. A data block consists of
row data (the actual data contained in rows or parts of rows
of a table), free space (space that can be used for adding new
rows), and block information (block attribute, applicable
table, and other header information). Though a data block is
a logical structure, it corresponds to a certain number of
bytes of physical disk space. This related physical space is
a disk block. The terms data block and disk block are often
used interchangeably.

In many cases a database of interest is a massive object
occupying thousands of billions of bytes (terabytes) of data,
only a small portion of which can be stored in the main
memory of the computer system at any time. The permanent
copy of the database is stored on secondary storage such as
a disk. In response to user queries the database server stores
requested disk blocks in a disk block buffer cache. FIG. 2
shows how a disk block buffer cache is used in a particular
database server, the Oracle Server from Oracle Corporation
of Redwood Shores, California. The database buffer cache
shown there is a region of main memory that stores the
buffers as well as the buffer cache metadata (e.g., hash queue
headers and buffer headers). This particular database server
has two lists: an LRU list and a dirty list, which together are
equivalent in function to the free list described above. The
database writer (DBWR) is a process responsible for writing
modified data from buffers in the cache (listed on the dirty
list) to data files on disk. If a buffer on the LRU list has
modified data, it is not overwritten but is first moved to the
dirty list. Once the DBWR copies the modified data on the
dirty list to the data files, the buffers on that list are free for
use.

This caching of disk blocks, of course, reduces the
number of times data must be read from the disk, an
operation that is thousands of times slower that reading the
data directly from main memory. A disk operation is thus
avoided if a disk block required by another query is already
stored in the buffer cache. For large computer systems with
massive databases, the disk block buffer cache must itself be
quite large. It is not uncommon to require a buffer cache of
tens of billions of bytes to reduce disk 10 operations
sufficiently to meet system performance requirements.

Whether used in an operating system or an application
program, disk block buffers are traditionally allocated from
a global pool of main memory without concern for system
topology. This same allocation is true for the buffer cache
metadata that keeps track of each disk block in the buffer
cache. This means that the physical memory locations for
the buffers in the cache and for the metadata are not
necessarily contiguous, but can be anywhere within an area
of memory reserved for the buffer cache.

For most computer systems the actual locations of the
buffers or cache metadata is not of concern because the
memory is centralized. In a uniprocessor machine, for
example, there is only one physical location for main
memory and all of its storage is equally accessible in time to
the processor (that is, all storage has the same latency). This
is also true in multiprocessor computers known as symmet-
ric multiprocessors (SMPs), which have a single, centralized
physical memory shared by all of the processors.
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SMP systems, however, use a single-bus architecture that
limits performance as the number of processors in the
system grows beyond a certain amount. Because of its
nature, a bus cannot physically connect large numbers of
processors while still providing both the bandwidth capacity
and memory access latency required by today’s high-speed
microprocessors. Thus the benefit of a disk block buffer
cache to a DBMS is no longer fully realized once an SMP
system grows to the extent that its bus bandwidth begins to
fall.

To overcome the limitations of SMP systems, a new
multiprocessor architecture has emerged in recent years. The
architecture combines a multiple of SMP nodes with a
system interconnect. Each of the nodes has a limited number
of processors, local memory, and remote cache intercon-
nected thereon by a high-speed node bus. A single physical
memory address space is still shared by all the processors of
the computer, but the memory is distributed among the
separate nodes. Computers built with this architecture are
called distributed shared memory machines and are
described in a number of publications such as Computer
Architecture: A Quantitative Approach, by Hennessy and
Patterson (Morgan Kaufmann 1996), which is incorporated
herein by reference. These computers are also known as
NUMA (non-uniform memory access) machines because
access to the separate physical memories by different pro-
cessors is no longer uniform in time. Processors located on
the same node as a local memory access the local memory
faster than processors that must access that memory from
across the system interconnect.

This difference in memory access times presents a prob-
lem in managing a disk block buffer cache on a NUMA
machine. Recall that the cache metadata that manages the
buffer cache is traditionally allocated from a global pool of
main memory without concern for the system topology.
Almost certainly, then, this metadata (which is accessed
much more often that the buffers themselves) is stored on a
number of nodes. A processor on one node, in accessing the
metadata to locate, allocate, or deallocate buffers, must
therefore reference memory on several remote nodes across
the system interconnect. These frequent and long references
to remote memories take significant time. Performance tests
with NUMA machines have shown that the execution time
required for cache management increases dramatically as the
number of nodes increases, despite the presence of a remote
cache on the processor’s node to cache metadata stored in
remote memories. The remote cache simply cannot keep up
with the frequent changes to the metadata stored in the
remote memories, and thus is frequently out of date.

An objective of the invention, therefore, is to provide a
method and means for efficiently accessing cache manage-
ment data in a distributed shared memory computer system
such as a NUMA machine.

SUMMARY OF THE INVENTION

In accordance with the invention, a buffer cache manage-
ment structure for a distributed shared memory computer
system comprises a first portion of the management structure
stored in the first memory and containing a first set of
management data structures for a buffer cache and a second
portion of the management structure stored in the second
memory and containing a second set of management data
structures for a buffer cache. Each set of management data
structures is stored entirely within one memory.

Further in accordance with the invention, a process may
perform operations on a buffer cache management structure
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stored in a distributed shared memory computer system
through the following actions: determining, from an
attribute of a data block requested by a first process, in which
memory a buffer cache management structure associated
with the data block is stored; determining if the memory
containing the buffer cache management structure is local to
the first process if the first process is remote from the
memory, having a process that is local to the memory
perform the operation on the buffer cache management
structure. Such a process may be a second process separate
from the first process

In one embodiment of this method, the first process
performs the operation on the buffer cache management
structure if the memory is local to the first process.

The foregoing and other features and advantages of the
invention will become more apparent from the following
detailed description and drawings of an illustrated embodi-
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing how a buffer cache,
including buffers and its metadata, is traditionally organized.

FIG. 2 is a block diagram showing how a buffer cache is
organized in a particular database server.

FIG. 3 is a block diagram of a multiprocessor computer
system with which the invention may be used.

FIG. 4 is a block diagram of a node of the multiprocessor
computer system of FIG. 3.

FIG. § is a flowchart of a method for constructing a buffer
cache management structure in accordance with the inven-
tion.

FIG. 6 is a block diagram of an exemplary buffer header
for use in the buffer cache management structure of FIG. 5.

FIG. 7 is a block diagram showing the partitioning of a
buffer cache management structure into separate portions for
storage in a distributed shared memory computer system.

FIG. 8 is a flowchart of a method for accessing a buffer
cache management structure in accordance with the inven-
tion.

DETAILED DESCRIPTION OF AN
ILLUSTRATED EMBODIMENT

The illustrated embodiment is implemented within a
multiprocessor computer having distributed shared memory.
It should be recognized, however, that the invention is not
limited to this implementation but can be applied wherever
buffer cache management involves memories with different
access times for processes executing on the computer sys-
tem.

FIG. 3 is a block diagram of a multinode, multiprocessor
computer system 10 that uses a computer architecture based
on Distributed-Shared Memory (DSM). This type of com-
puter system is also known as a NUMA machine. Four nodes
12, 14, 16, and 18 are shown connected by a system
interconnect 20 (i.e., a network) that permits any node to
communicate with any other node. The purpose of system
interconnect 20 is to allow processors in any node to access
the memory resident in any other node. System interconnect
20 is a switch-based network that uses the Scalable Coherent
Interface (SCI) interconnection mechanism. SCI is an IEEE-
approved standard that is well documented in a number of
publications including IEEFE Std 1596-1992 (Aug. 2, 1993)
and Mulfiprocessor Interconnection Using SCI, a Master
Thesis by Ivan Tving, DTH ID-E 579 (1994), both of which
are hereby incorporated by reference.

10

15

20

25

30

35

40

45

50

55

60

65

6

The physical links of interconnect 20 provide high band-
width and low latency and are scalable to allow for the
addition of more nodes.

Links that meet these requirements presently include
point-to-point interconnects with a data throughput of one
gigabyte/second or greater. The links can be configured in
any number of suitable ways for connecting nodes 12, 14,
16, and 18, such as in a ring topology, in arbitrary topologies
through switches, or in a combination of both. The links can
be wired or wireless (optical, RF, etc.) depending upon
system performance needs. Additional topologies are
described in “Interconnect Topologies with Point-To-Point
Rings,” Ross E. Johnson and James E. Goodman, December
1991, Computer Sciences Technical Report #1058, Univer-
sity of Wisconsin—Madison, which is hereby incorporated
by reference.

Node Overview

A block diagram of node 12 on system 10 is shown in
FIG. 4. The node includes a conventional symmetric mul-
tiprocessor (SMP) node bus 22 for connecting multiple data
processors 24 to local memory 26. For clarity, nodes 12, 14,
16, and 18 may be referred to as home nodes or remote
nodes. A home node is one whose local memory stores a
memory block of interest (i.e., the physical address of the
memory block falls within the address range supported by
the local memory or cache); all of the other nodes are then
remote nodes with respect to that memory block.
Additionally, a node may be a requesting node or a respond-
ing node. A requesting node is one requesting data; a
responding node is one furnishing such data. Input/output
(I/0) device 28, which is also connected to bus 22, connects
the node to devices outside computer system 10 for com-
municating information between the computer system and
the outside world. I/O device 28 may be of conventional
design and includes means for connecting the node (and
hence system 10) to personal computers, local area
networks, etc., that wish to utilize the power of the multi-
node computer system. The 110 device 28 may also allow
for connection to peripheral devices, such as floppy disks,
hard disks, CD-ROMs etc. To connect node 12 to the other
nodes in the system, the node includes a system interconnect
interface 30. The system interconnect interface forms part of
interconnect 20 along with the physical links between nodes
and the same devices on the other nodes of the computer
system 10. In the present embodiment, interface 30 is
constructed to implement the SCI standard for data com-
munication between the nodes, allowing a processor on one
node to transparently access memory physically located on
another node. The interface 30 also contains a remote cache
in the present embodiment, although the remote cache could
also be separate from the system interconnect interface.

System Initialization

When computer system 10 first starts up or is reset,
software executing on the system in accordance with the
invention constructs a buffer cache. This software can be
incorporated into either system or application hardware or
software using a process, thread, kernel thread, lightweight
process, thread of kernel execution, etc. These terms and
their equivalents are referred to herein as a “process,” which
includes any coherent sequence of steps undertaken by a
computer program. System initialization and other aspects
of the invention can be performed by any desired piece of
software such as a database server, external cache manager,
or an operating system buffer cache.
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FIG. 5 is a flowchart of a method according to the
invention for constructing a buffer cache and its manage-
ment structure. As part of system initialization 40 in the
illustrated embodiment, a master boot process is executed.
The master process determines which nodes of system 10
will be active in the context of buffer cache management
based on the application configuration of the user (step 42).
The master process then uses means such as an operating
system API (application programming interface) to create a
dedicated cache management server process on each active
node (step 44). Equivalent means for creating such server
processes could, of course, be used. Each cache management
server process creates a communications memory area and
a buffer cache management structure on its local memory of
the node (step 46). The buffer cache management structure
initially includes a free list on which all of the newly created
buffer headers are contained and headers for each of the
management data structures such as queues. The communi-
cations area is where remote processes write requests for
management operations to be performed on their behalf by
the resident server process, as will be described. The com-
munications area, however, does not absolutely have to be
local to either the requesting process or the server process;
this is simply a preferred location.

The Buffer Cache Management Structure

The buffer cache management structure (also referred to
herein as the buffer cache metadata) is a data structure that
includes in the illustrated embodiment a set of one or more
management data structures such as (but not limited to) hash
queues of buffer headers and a free list of buffer headers. For
example, FIG. 7 shows stored in each local memory portions
of buffer cache metadata 70a, 70b, 70xn. Within buffer cache
metadata 70a is shown management data structures 71, 72,
73 (the links between elements of the management data
structures and other management data structures such as a
free list being omitted from the figure for clarity). Similarly,
within buffer cache metadata 705 is shown management data
structures 74, 75, 76, and 77 (free list).

Recall that initially the hash queues are empty and all of
the buffer headers are contained on the free list. As a process
seeks access to data stored in a disk block that is not cached,
the buffer header at the top of the free list (the least recently
used) is assigned to the disk block and placed on the
appropriate queue. The buffer header is also moved to the
end of the free list (the most recently used). In this way
buffer headers become linked elements of the hash queues.

FIG. 6 shows the makeup of a buffer header 52, which in
this embodiment is an element in a doubly linked list headed
by a hash queue header. The element 52 includes fields 54
and 56 for identifying the disk block stored in the associated
buffer, a pointer 58 to the memory location of the buffer
storing the disk block, and forward and backward pointers
60, 62 to other elements (if any) on the list. The element also
includes forward and backward pointers 64, 66 to other
elements on a free list of blocks from which additional
blocks are taken.

In the illustrated embodiment a buffer header is added as
an element to a particular management data structure based
on the results of a hashing function on an attribute of the disk
block such as its address. In buffer cache metadata 70a, for
example, each management data structure is a queue headed
by a hash queue header such as H1 or H2 and containing a
number of linked buffer header elements indicated by fol-
lowing squares. If hashing on the disk block attribute results
in a “1,” then H1’s list is traversed and each element is
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examined to determine if an element of the queue refers to
the block. If not, then an element is added to H1’s list from
the free list and configured to refer to the block. A typical
hashing function is the modulo operation, although other
operations can of course be used.

Localizing the Management Data Structures

Recall that the problem with using prior buffer cache
management structures with distributed shared memory sys-
tems is the delay inherent in traversing a hash queue that is
likely stored on multiple different physical memories. One
aspect of the invention avoids that delay by requiring that
each management data structure (e.g., a hash queue and its
associated hash queue header) be stored entirely within one
memory.

FIG. 7 shows how the buffer cache management structure
in the illustrated embodiment is partitioned to localize hash
queues. Within a local memory each set of hash queues is
stored entirely within one memory. For example, the local
memory on the first node contains a set of hash queues 71,
72, 73. By design, all elements added to these hash queues
will be stored in the first node’s local memory. Thus a
process traversing the hash queue 71 needs only access one
memory. The process does not have to access other memo-
ries on the second, third or nth nodes of the system 10 to find
elements of the queue 71.

The buffer cache management structure in each memory
also includes a free list containing only buffer header ele-
ments from a set of management data structures stored
entirely within that memory. This feature is shown by
example in the local memory for the second node. The
arrows indicate a linked LRU list, with the element 79
nearest header FL being the head (and thus least recently
used) element and element 78 being the tail. If a process
cannot find a data block after traversing the management
data structure in which the data block would be referenced
if stored in the buffer cache, the process then accesses the
free list that is stored in the same local memory as the
traversed management data structure. From the free list the
process obtains a buffer for storing the data block. For
example, if a process has searched data structure 75 for a
certain data block in vain, it then accesses free list 77 and
takes element 79 as a buffer for the missing data block.
Element 79 is then moved from data structure 76 to data
structure 75 and is also moved to the tail of free list 77 as the
now most recently used buffer header.

The number of management data structures stored per
memory can vary and the total number of management data
structures within the buffer cache can vary by design. As
shown in FIG. 7, however, it is generally preferred to have
substantially the same number of management data struc-
tures stored in each memory.

Performing Operations on the Buffer Cache
Management Structure

Typical operations by a process seeking access to a disk
block include disk block look up in the buffer cache, adding
and removing disk blocks from the buffer cache, and acquir-
ing a free buffer in the cache for storage of another disk
block. A process performs these operations through interac-
tions with the buffer cache management structure.

FIGS. 7 and 8 illustrate how a process in the illustrated
embodiment performs these operations in accordance with
the invention. Assume a first process seeks access to data
stored in a disk block (step 80). The attribute of the disk
block is examined to determine on which local memory an
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associated buffer cache management structure is stored (step
82). In the illustrated embodiment, the determination is
made with a hash function such as the disk block attribute
modulo the number of nodes, although other functions may
be used. It is then determined if the memory containing this
portion of the buffer cache management structure is local to
the first process; that is, is the first process on the same node
as this memory (step 84). If the first process and the memory
are on the same node, then the first process, in a form of “self
service,” performs the cache management operation (step
86). If not, the first process requests that the cache manage-
ment server process that is on the same node as this local
memory perform the operation (step 88). The server process
then performs the cache management operation (step 90)
and notifies the first (requesting) process of the operation
results (step 92).

This, of course, is only one embodiment of a method for
performing operations on the buffer cache management
structure in accordance with the invention. It is possible to
vary the number and nature of the steps. For example, the
first process may be designed not to perform cache man-
agement even on its own node, but rather to request that the
server process on its node perform the operation. The first
process may migrate to the remote node to perform the cache
management operation itself rather than use the services of
the server process on that node. The server process may be
alerted to perform the operation in any number of ways. The
extent, if any, to which the first process is notified of the
results may be varied.

Prior to these operations, of course, the disk block
attribute is again hashed to find on which hash queue the
element for the disk block, if it exists, may be found. For
example, assume that there are eight nodes numbered zero
to seven in computer system 10 and that the attribute of the
disk block sought by a process is a multiple of eight. This
disk block attribute hashes to the first node shown in FIG. 7
(which has a 07 number). The disk block attribute is then
hashed again by, say, a modulo § operation. This operation
will distribute the disk blocks across five queues in the first
node. Similar hashing functions can be applied in the other
nodes.

Examples of operations by the process performed on the
buffer cache management structure include the following:
checking the buffer cache management structure for the
presence of the data block in the buffer cache; modifying the
buffer cache management structure to reflect the removal or
addition of a data block to the buffer cache; and allocating
a buffer for a data block from a list of free buffers contained
in the buffer cache management structure.

Having illustrated and described the principles of the
invention in an exemplary embodiment, it should be appar-
ent to those skilled in the art that the embodiment can be
modified in arrangement and detail without departing from
such principles. For example, the management data structure
can be implemented as a queue, list, bitmap, binary tree or
any other data structure capable of performing the described
functions. The invention can be used with secondary storage
other than disks, and the term “disk block” as used herein is
intended to include any type of secondary storage block.
Many of the software aspects of the embodiment may be
implemented in hardware and many of the hardware aspects
may be implemented in software. The invention may be used
with other computer systems and with memories such as
ROM, DRAM, SRAM, etc. In view of the many possible
embodiments to which the principles of the invention may
be applied, it should be understood that the illustrated
embodiment is intended to teach these principles and is not
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intended to be a limitation on the scope of the invention. The
invention, rather, is limited only by the scope of the follow-
ing claims. I therefore claim as my invention all that comes
within the scope and spirit of these claims and their equiva-
lents.

I claim:

1. A method for a process to perform operations on buffer
cache metadata stored in a distributed shared memory com-
puter system having at least two memories, the method
comprising:

determining, from attributes of a data block requested by

a first process, in which memory buffer cache metadata
associated with the data block is stored,

determining if the memory containing the buffer cache

metadata is local to the first process;

if the first process is remote from the memory, requesting

through the first process that a second process that is
local to the memory perform the operation on the buffer
cache metadata;

performing the operation with the second process; and

notifying the first process of the operation results.

2. The method of claim 1 including:

if the memory is local to the first process, having the first

process perform the operation on the buffer cache
metadata.

3. The method of claim 1 including:

if the memory is local to the first process, having a server

process local to the memory perform the operation on
the buffer cache metadata.

4. The method of claim 1 wherein the first process is
remote from the memory, having a second process that is
local to the memory perform the operation on the buffer
cache metadata.

5. The method of claim 1 wherein if the first process is
remote from the memory, migrating the first process to the
memory to perform the operation on the buffer cache meta-
data.

6. The method of claim 1 wherein the first determining
step comprises hashing on the data block attribute to deter-
mine in which memory the associated buffer cache metadata
is stored.

7. The method of claim 1 wherein the operation is
checking the buffer cache metadata for the presence of the
data block in the buffer cache.

8. The method of claim 1 wherein the operation is
modifying the buffer cache metadata to reflect the removal
or addition of a data block to the buffer cache.

9. The method of claim 1 wherein the operation is
allocating a buffer for a data block from a free list of buffers
contained in the buffer cache metadata .

10. The method of claim 1 wherein the computer system
is a non-uniform memory access (NUMA) machine having
a multiple of nodes each with a local memory and one or
more Processors executing processes.

11. The method of claim 1 wherein the buffer cache
metadata is partitioned into portions stored in the two
memories.

12. The method of claim 1 wherein the buffer cache
metadata contains a set of management data structures
stored entirely within one memory.

13. The method of claim 12 wherein performing an
operation on the buffer cache metadata includes:

determining from the data block attribute which manage-

ment data structure in the set the operation is to
performed on; and

performing an operation on the determined management

data structure.
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14. The method of claim 1 wherein the buffer cache
metadata and an associated buffer cache are parts of a
database server executing on the computer system.

15. The method of claim 1 wherein the buffer cache
metadata is constructed by a database server executing on
the computer system.

16. The method of claim 1 wherein the buffer cache
metadata is constructed by an external cache manager
executing on the computer systems.

17. The method of claim 1 wherein the buffer cache
metadata is constructed by an operating system buffer cache
executing on the computer system.

18. The method of claim 9 wherein the free list contains
only elements from a act of management data structures
stored entirely within one memory.

19. The method of claim 12 wherein the management data
structures identify blocks cached in buffer caches.

20. The method of claim 1 wherein Se distributed shared
memory computer system has a shared physical address
space.

21. The method of claim 12 wherein each management
data structure comprises a hash queue and associated hash
queue header.

22. The method of claim 12 wherein each management
data structure comprises a collection of associated buffer
header elements.

23. A method for a process to perform operations on a
buffer cache metadata stored in a distributed shared memory
computer system having at least two memories, the method
comprising:

providing buffer cache metadata that is partitioned into

portions stored in at least the two memories, each
portion containing a set of management data structures
stored entirely within one memory;
determining, from an attribute of a data block requested
by a first process, in which memory a portion of a buffer
cache metadata associated with the data block is stored;

determining if the memory containing the buffer cache
metadata is local to the first process;

if the memory is local to the first process, having the first

process perform the operation on the buffer cache
metadata;
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if the first process is remote from the memory, requesting
through the first process that a second process that is
local to the memory perform the operation on the buffer
cache metadata;

performing the operation with the second process; and

notifying the first process of the operation results.

24. The method of Him 23 wherein a number of man-
agement data structures in a set is substantially the same for
each portion of the metadata stored in a memory.

25. The method of claim 23 wherein the computer system
is a non-uniform memory access NUMA) system having
separate nodes each with a local memory.

26. The method of claim 25 wherein the number of
management data structure in a set is substantially the same
for each portion of the metadata stored in a local memory.

27. The method of claim 23 wherein the buffer cache
metadata and an associated buffer cache am parts of a
database Server executing on the computer system.

28. The method of claim 23 wherein the distributed shared
memory computer system has a shared physical address
space.

29. The method of claim 23 including storing a free list in
a memory, the free list containing only elements from a set
of management data structures stored entirely within the
memory.

30. The method of claim 23 wherein the buffer cache
metadata is constructed by a database server executing on
the computer system.

31. The method of claim 23 wherein the buffer cache
metadata is constructed by an external cache manager
executing on the computer system.

32. The method of claim 23 wherein the buffer cache
metadata is constructed by an operating system buffer cache
executing on the computer system.

33. The method of claim 23 wherein each management
data structure comprises a hash queue and associated hash
queue header.

34. The method of claim 23 wherein each manageuent
data structure comprises a collection of associated buffer
header elements.



