
DBFS and SecureFiles
Krishna Kunchithapadam, Wei Zhang, Amit Ganesh, Niloy Mukherjee

Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065

{Krishna.Kunchithapadam, Wei.Zhang, Amit.Ganesh, Niloy.Mukherjee}@Oracle.com

ABSTRACT

Modern enterprise, web, and multimedia applications are

generating unstructured content at unforeseen volumes in the form

of documents, texts, and media files. Such content is generally

associated with relational data such as user names, location tags,

and timestamps. Storage of unstructured content in a relational

database would guarantee the same robustness, transactional

consistency, data integrity, data recoverability and other data

management features consolidated across files and relational

contents. Although database systems are preferred for relational

data management, poor performance of unstructured data storage,

limited data transformation functionalities, and lack of interfaces

based on filesystem standards may keep more than eighty five

percent of non-relational unstructured content out of databases in

the coming decades.

We introduce Oracle Database Filesystem (DBFS) as a

consolidated solution that unifies state-of-the-art network

filesystem features with relational database management ones.

DBFS is a novel shared-storage network filesystem developed in

the RDBMS kernel that allows content management applications

to transparently store and organize files using standard filesystem

interfaces, in the same database that stores associated relational

content. The server component of DBFS is based on Oracle

SecureFiles, a novel unstructured data storage engine within the

RDBMS that provides filesystem like or better storage

performance for files within the database while fully leveraging

relational data management features such as transaction atomicity,

isolation, read consistency, temporality, and information lifecycle

management.

We present a preliminary performance evaluation of DBFS that

demonstrates more than 10TB/hr throughput of filesystem read

and write operations consistently over a period of 12 hours on an

Oracle Exadata Database cluster of four server nodes. In terms of

file storage, such extreme performance is equivalent to ingestion

of more than 2500 million 100KB document files a single day.

The set of initial results look very promising for DBFS towards

becoming the universal storage solution for both relational and

unstructured content.

1. INTRODUCTION
Content volumes are growing rapidly in both enterprise and

consumer spaces as processors, storage devices, and physical

hardware are growing in scale. According to an independent study

[1], more than 500 exabytes of enterprise content had been

ingested across all computer systems in 2008 alone. Analyst

estimates demonstrate that more than eighty five percent of such

content is unstructured in nature, which is accompanied by fifteen

percent of relational content [2]. Besides enterprise applications,

consumer multimedia services, higher availability of Internet

access in emerging countries, and social networks are steadily

contributing to the digital deluge. In 2009, more than 200,000

videos were uploaded per day using YouTube application [3].

More recent statistics from Facebook reveal that more than 60

million status updates are posted in a day, and more than 3 billion

photographs are uploaded per month [4]. Estimates predict more

than 20 quadrillion unstructured data objects will be created in the

year 2011 alone [2].

Although database systems are equipped with more advanced and

secure data management features such as transactional atomicity,

consistency, durability, manageability, and availability, lack of

high performance and throughput scalability for storage of

unstructured objects, and absence of standard filesystem-based

application program interfaces have been cited as primary reasons

for content management providers to often prefer existing

filesystems or devise filesystem-like solutions for unstructured

objects [5][6].

Over the last two decades, several database researchers have

envisioned an architectural unification of databases and

filesystems. In 1996, Dr. David DeWitt had presented his vision

on the confluence of Objects and Databases allowing large

enterprises reaping the benefits of families of products that offer

integrated solutions functioning scalably and robustly by the end

of 2006 [7]. In his presentation at FAST 2005, Dr. Jim Gray

mentioned that “Filesystem should borrow ideas from DB” [6].

We introduce Oracle Database Filesystem (DBFS) as a

consolidated solution achieving the much-anticipated architectural

unification through a cross-pollination of ideas from filesystem

research to relational databases. DBFS is a pioneering shared-

storage network filesystem client-server architecture built on

Oracle SecureFiles [8][9], the high-performance unstructured data

storage architecture within the Oracle RDBMS [10]. SecureFiles

was primarily designed to provide filesystem-like or better storage

throughput across all file sizes and types that scales with the scale

of content-generating applications as well as with underlying

hardware and storage systems. Besides performance and

scalability aspects, several filesystem-like data transformation

capabilities such as de-duplication, compression and encryption

have been incorporated in SecureFiles to provide maximal data

storage utilization and security. DBFS provides a client-server

filesystem abstraction over SecureFiles allowing content

management developers to perform typical network filesystem

operations within the RDBMS using standard filesystem

interfaces besides structured data management using standard

database interfaces. Similar to traditional network filesystems,

Oracle Database Filesystem provides a transparent abstraction of a

shared network filesystem as a local filesystem to end-user

applications. Storage of unstructured data within the Oracle

RDBMS extends the rich set of transactional, consistency,

durability and temporal data management features to existing

filesystem-based tools and applications.

The remainder of the paper is organized as follows. An overview

of DBFS architecture is provided in section 2. Sections 3 to 7

detail the individual components of the DBFS architecture.

Section 8 presents a preliminary performance evaluation of DBFS

on filesystem storage and access operations using POSIX-

standard filesystem commands. The paper is concluded in section

9.

2. ORACLE DBFS ARCHITECTURE
The architecture of Oracle DBFS comprises of filesystem client

and server components, similar to traditional NFS [11]. Figure 1

demonstrates the client-server architecture of Oracle DBFS.

Figure 1. Oracle DBFS: Shared-Storage Filesystem within the

Database

The RDBMS server [13] is the filesystem server for DBFS. The

server consists of one or more filesystem stores that are accessed

by a set of interfaces called DBFS Content API. A filesystem store

is characterized by one or more database objects such as tables,

table partitions, indexes, etc. Besides relational columns, these

database objects consist of columns dedicated to filesystem

metadata attributes and LOB datatypes. Oracle RDBMS allows

these database objects to share storage in a multi-node distributed

environment [12] thereby providing shared-storage filesystem

capabilities to DBFS. File metadata operations, such as creation

and listing of directories, results in modifications of tuples in

these database objects. The SecureFiles architecture provides

support for storage and access of file data as LOB datatypes in

database storage devices using highly optimized algorithms that

scale performance up on single multi-core processor systems as

well as scale out on distributed systems.

Besides providing high performance, SecureFiles provides

advanced file data transformation capabilities that include

filesystem compression to optimize utilization of cache and

storage, automated de-duplication of files to prevent redundant

file storage, and Transparent Data Encryption (TDE) semantics to

both relational and file data. In addition to these advanced

filesystem features, Oracle SecureFiles infrastructure was

designed to provide several RDBMS capabilities, such as

atomicity, consistency, isolation and durability semantics on

unstructured data management operations, along with more

advanced database features, such as consistent backup, point in

time recovery, XML indexing, XML queries, temporal

management and query ability of unstructured and relational data

through complete historization of data [15]. DBFS filesystem

stores inherit all the capabilities provided by SecureFiles storage

infrastructure. The rich set of data transformation and

management options allows applications to create filesystem

stores with different combinations of such options.

The DBFS Content API provides PL/SQL interfaces that

correspond to the complete set of POSIX filesystem access

primitives such as create file, open, read, write, create directory,

list directory, change directory, etc. Each filesystem store is

characterized by application-specific implementations equivalent

to these primitives within the DBFS Content API interfaces. A

server-specific mount-point is associated with each filesystem

store. Operations on files with pathnames relative to a server-

specific mount-point are performed using the functionalities

implemented for the corresponding filesystem store on database

objects characterizing the store.

The DBFS client component utilizes Filesystem in User Space

(FUSE) [14] kernel module that exposes filesystem calls from the

OS kernel as function callbacks in user space. The client

component transforms the function callbacks to the equivalent

PL/SQL interfaces provided by Content API and places the calls

to the RDBMS server over OCI or Oracle Call Interface

connections. DBFS filesystem is mounted on the client machine

with a client-specific mount-point. POSIX-based filesystem

commands that are relative to the client-specific mount-point are

converted to Content API functions. Based on the server-specific

mount-point specified in the Content API interfaces, the target

filesystem store is identified. The Content API therefore provides

Linux VFS-like capabilities of mounting of multiple filesystems

in a single database server. Besides a filesystem client , DBFS

allows access of relational, filesystem metadata and file data

directly through database clients such as PL/SQL, JDBC and OCI.

To summarize, the DBFS client server architecture provides the

complete set of interfaces that transform filesystem calls from the

client to database calls to RDBMS server. These calls are targeted

to individual filesystem stores that employ store-specific

interfaces to perform operations on database objects associated

with them. Filesystem operations that involve storage and access

of files are managed through the Oracle SecureFiles storage

architecture. Each of the components will be discussed in detail in

the subsequent sections.

3. SECUREFILES
SecureFiles [8][9] was introduced in 2007 as a high performance

and scalable storage architecture for unstructured data in the

database, breaking the performance barrier of unstructured data

management in a database. File data manipulation and retrieval

operations in Oracle DBFS filesystem are handled by the

SecureFiles infrastructure. Figure 2 demonstrates the architecture

of SecureFiles. The major components can be categorized based

on their contributions in providing filesystem-like throughput and

scalability, maximizing storage space utilization, and providing

secure data management. The following subsection enumerates

the major components of SecureFiles architecture.

Figure 2. SecureFiles Architecture.

3.1 Performance and Scalability
The write gather cache, inode management, database space

management and automatic storage management components are

responsible for ensuring the scalability of file manipulation and

retrieval throughput performance.

3.1.1 Write Gather Cache
The Write Gather Cache (WGC) is a subset of the database cache

that can buffer large amounts of file data during write operations.

The writes are checkpointed to the underlying storage system

during file close operations and buffer overflows. This buffering

of in-flight data allows for large contiguous storage space

allocation leading to large contiguous storage I/O operations with

reduced disk seek costs.

3.1.2 Inode Management
The inode management layer is responsible for initiating on-disk

storage and access operations on files. During file checkpointing

following write operations, the inode manager requests free space

from underlying storage systems to initiate asynchronous I/O

operations. Filesystem-like inode data structures are created and

managed for individual DBFS files to maintain the array of

contiguous physical offsets and lengths. This prevents single

points of contention in concurrent environments during update,

delete and append operations on files. Metadata maintained in the

inode can remain extremely compact because the space

management layer provides the support to return a set of variable

sized chunks to store the data being written to disk. The metadata

management structures can therefore scale to map terabyte-sized

objects very efficiently. SecureFiles inode management layer

contributes in further scale-up of read operations through an

intelligent pre-fetching mechanism. The layer keeps track of

access patterns and intelligently pre-fetches data before the

request is actually made. Read latency is reduced by the overlap

of network roundtrip with the disk I/O thereby scaling up read

throughputs to greater extents.

3.1.3 Free Space Management
The free space management is one of the major components

responsible for scalability of SecureFiles throughput during file

manipulation operations. The layer dedicates one or more

SecureFiles segment to a filesystem store database object, each

segment being a set of contiguous blocks of underlying shared

storage space. File operations such as writes, updates, appends

and deletes result in allocation of logical free space from

SecureFiles segments or de-allocating used space from files back

to SecureFiles segments keeping the real density and seek

amortization trend in mind.

The space management layer supports allocation of variable sized

chunks. With SecureFiles objects being cached in the Write

Gather Cache, the space management layer is able to meet larger

space requests from the inode manager through more contiguous

layout on disk, therefore providing more scalable read and write

access.

The free space in SecureFiles segments is shared across all the

instances in a distributed Oracle Real Application Cluster

environment. To achieve maximum scalability in a distributed

environment, a dedicated background space monitor process on

each database server node performs load balancing of free space

across the cluster. Each active database server node creates its

private in-memory space dispenser shared by processes running

on the same node but never across different nodes. As a result,

free space allocations requested by server processes are met by the

local database node, thereby reducing cluster wide network and

storage traffic. The design of the in-memory dispenser allows

space allocation operations to scale with the degree of

concurrency on a single database node. Private in-memory space

dispensers in individual nodes prevent the need for server

processes to communicate across nodes in a shared-storage system

to maintain free space metadata coherence. The design therefore

alleviates scalability bottlenecks of space allocation operations as

the number of nodes in a cluster is scaled up.

Operations such as full overwrites / rewrites, updates and deletes

of files in the DBFS server follow „copy-on-write‟ semantics

resulting in de-allocation of space previously occupied by the

offsets affected by the operation. Users can set retention policies

for such old data versions in their filesystem stores. Based on the

retention policies, the de-allocated space is reused for future

allocations once the retention period is over. Such „copy-on-write‟

semantics allow extension of database properties to file data, as

explained in Section 4.

3.1.4 Automatic Storage System Management
 Automatic Storage System Management [16] assists

manageability of underlying physical storage. SecureFiles

extensively uses this feature to guarantee maximum I/O

performance from raw asynchronous I/O operations across the

storage system. The feature allows spreading the SecureFiles

segment layout evenly across all available storage resources to

scale performance and maximize storage utilization across the

entire storage system. ASM provides mirroring options for

protection against disk failures. Data Transformation Components

3.2 Memory and Storage Utilization
Data transformation components in Oracle SecureFiles allow for

optimal utilization of storage space by the DBFS filesystem

stores.

3.2.1 De-duplication
When a DBFS filesystem store has de-duplication [18] enabled,

SecureFiles automatically detects duplicate files, and stores only a

single physical copy on disk, thereby minimizing space usage. A

secure hash is generated for a subset of the file data (prefix hash)

and also for the whole file (full hash). During streaming writes,

once generated, the prefix hash is compared to a set of prefix

hashes stored in an index. If there is a prefix match, then the file

associated with the original prefix hash (master version) is read

and byte-by-byte comparison is performed across the buffered

data and the master version. At the end of the write, if the full

hash matches and the entire file matches on a byte-by-byte basis,

then a reference pointer directing to the master version is

maintained in the filesystem store. The component therefore

contributes in scaling up throughput of applications that are

required to store multiple instances of files, by preventing

redundant physical I/O on the underlying storage system.

3.2.2 Compression
When compression option is enabled in a filesystem store,

buffered writes from the write gather cache is compressed when it

exceeds a configured boundary threshold. These compressed data

chunks are referred to as compression subunits. Multiple

contiguous compression subunits are encompassed within a larger

unit. Compression is performed piecewise in such a way that

efficient random access of large files is possible. Compression not

only results in significant savings in storage but also improves

performance by reducing I/O sizes, database buffer cache

requirements, data logging for media recovery, and encryption

overheads.

3.3 Secure File Data Management
SecureFiles uses Transparent Data Encryption (TDE) syntax for

encryption of files along with the accompanying relational

metadata. File buffers are encrypted/ decrypted on database block

size units using one of several encryption algorithms, namely,

Triple Data Encryption Standard with a 168-bit key size,

Advanced Encryption Standard with a 128 bit key size, Advanced

Encryption Standard with a 192-bit key size, or Advanced

Encryption Standard with a 256-bit key size.

4. EXTENDING DATABASE FEATURES

TO FILES
This subsection provides details of the some of the database

features supported by Oracle SecureFiles infrastructure that are

automatically inherited by Oracle DBFS.

4.1.1 Transaction Atomicity
Storage of files within Oracle RDBMS guarantees transactional

atomicity for file and relational data operations in Oracle DBFS.

Relational data in filesystem stores is managed using the

transaction semantics associated with the relational database

kernel. The database kernel implements these semantics by

generating undo records for all data and metadata operations. The

undo records are stored as first-class objects within the database

and are used to roll back database operations during failures

thereby maintaining transactional consistency in the database.

Similar semantics are used for guaranteeing transactional

atomicity of filesystem metadata manipulation operations in

Oracle DBFS.

File data operations in DBFS undergo „copy on write‟ semantics

for overwrite and large update operations. Such a semantic

alleviates the requirement to store previous object images, partial

or entire, for rollback purposes. When a transaction aborts, the

relational metadata associated with SecureFile objects, and space

metadata roll back using the undo records. As a result, the

SecureFile object locators point to the previous image of the

inode metadata blocks that in turn point to the previous versions

of the objects. Because of „copy-on-write‟ semantics for large

updates and overwrites, the rollback is not required to perform

additional I/O to restore the previous object images. As a result,

transaction recovery becomes independent of the sizes of the

changes on the SecureFile objects. For smaller updates,

SecureFile objects undergo in-place updates with traditional

relational transaction undo, therefore avoiding unnecessary

fragmentation. The transaction atomicity semantics guarantee

transaction level consistency between files and their associated

relational content in Oracle DBFS.

4.1.2 Read Consistency
Oracle RDBMS supports multi-version read consistency for

relational data. Queries retrieve data by re-creating snapshots of

modified data blocks as of the time of their issuances. The

snapshots or versions of relational data blocks are created through

application of undo records that were generated during data

manipulation operations. While accompanying relational and

filesystem metadata in DBFS filesystem use the above techniques

to achieve read consistency, files stored as SecureFiles objects

achieve this making use of „copy-on-write‟ semantics. SecureFiles

space management component maintains chunk metadata

associated with object updates and deletes. The space freed during

the update and delete operations map to old versions of data. The

space management component retains such freed up space for a

user-specified amount of time. Depending on the expiration of the

retention period, the space management component either retains

such space or reuses them for future allocations. This technique

guarantees users of Oracle DBFS to retrieve the most read-

consistent version of file content along with the associated file

and relational metadata at a point in time within the retention

period.

4.1.3 Temporality
The read consistency mechanism described in the previous

subsection is extended by the Oracle Flashback framework [15]

to provide capabilities to query, retrieve, and recreate relational as

well as unstructured data consistent as of any point in time in the

past, ranging from several minutes to several years. Being first

class RDBMS objects, the framework is automatically inherited

by DBFS file and relational data management. Content

management applications can set retention periods to SecureFiles

segments in DBFS filesystem stores. If not explicitly specified by

a user, previous versions of files are retained as long as their

accompanying filesystem and relational metadata are retained.

This ensures consistency of DBFS file data retrieval at any point

in time as long as the accompanying filesystem and relational data

can be retrieved. SecureFiles with Flashback Archive provide the

option for content management applications to create tamper-

proof temporal snapshot stores. Such stores can support creation

and retrieval of critical content snapshots and accompanying

relational data consistent as of several years in the past, extremely

relevant to applications in content security and compliance areas.

5. FILESYSTEM STORES
As mentioned in section 2, a filesystem store is a container for

files and relational content within the RDBMS. Physically, a

filesystem store consists of one or more dedicated tables, referred

to as store-tables, along with SecureFiles segments. The layout of

a filesystem store is demonstrated through Figure 3.

Figure 3: An example filesystem store.

The store-table allows applications to define optional columns

that contain relational metadata associated with the file, e.g.,

location information associated with photograph image files.

Besides optional user-defined relational columns, they contain

mandatory scalar columns to store standard, well-defined

filesystem-specific metadata based on the POSIX standard

namespace, such as STD_PATHANME, STD_PARENT, etc.

Directories do not have a well-defined length and stores are free

to set this property to zero, null, or any other value they choose),

std_modification_time, and so on.

Besides the above columns, a store-table consists of one or more

attributes of the LOB datatype. For a row in the store table that

corresponds to a file record, the LOB datatype column in the row

contains reference pointer to the file content that is stored and

accessed from the associated SecureFiles segment. The

SecureFiles segment is shared by all file records contained in the

associated store-table. Storage parameters of SecureFiles segment

can be configured to enable different flavors to filesystem stores.

For example, a filesystem store targeted towards personal

documents may enable SecureFiles compression for storage

utilization benefits while a filesystem store targeted towards

mission-critical content may enable SecureFiles encryption.

Logically, a filesystem store is characterized by a store-name that

contains a collection of files, each identified by a unique absolute

path name (that is, a "/" followed by one or more "component

names" separated by "/"). Some stores may implement only a flat

namespace, others might implement "directories" (or "folders")

implicitly, while still others may implement a comprehensive

filesystem-like collection of entities: hierarchical directories, files,

symbolic links (or just links), hard links (or references), and so

on, along with a rich set of relational metadata (or "properties")

associated with files.

DBFS allows creation of multiple stores within the same database.

The RDBMS allows database transactions, read consistency and

other ACID properties to span relational, filesystem metadata and

file data in a filesystem store. The store-table being a database

object allows access of relational, filesystem metadata and file

data through database client interfaces such as PL/SQL, JDBC

and OCI.

6. FILESYSTEM SERVER
The Oracle Database Filesystem Server consists of a set of

interfaces within the database that provide filesystem-like

abstraction of DBFS stores to the clients. Figure 4 demonstrates

the components of the DBFS server. The topmost component of

the server interface is called the DBFS ContentAPI (CAPI). The

DBFS ContentAPI is a collection of interfaces that correspond

corresponding to POSIX-standard filesystem access primitives

such as create, open, read, write, list directory, change directory,

etc. The ContentAPI defines a PL/SQL interface for every

POSIX-standard filesystem call interface. The complete set of

interfaces defined by the ContentAPI is used by the filesystem

client to access underlying filesystem stores.

The DBFS Store Provider API, DBFS SPI, follows the Content

API. The SPI allows registration of several user-defined PL/SQL

packages or Store Providers, each of which inherits and

implements the set of PL/SQL interfaces defined by the CAPI.

The DBFS ContentAPI implements a VFS abstraction based on

store providers and the SPI. Store providers manage the low-level

details of data storage and retrieval and can do so in arbitrary way.

This allows applications to create multiple instances of the same

filesystem interface through multiple store providers. For

example, a read-only application may implement the PL/SQL

interface for write system call to return an error message, while a

read-write application would implement the same interface to

actually store the data in the SecureFiles segment. A temporal

filesystem application may choose to implement the read interface

to retrieve file data consistent as of a fixed time in the past, while

a traditional filesystem application would implement the same to

retrieve the most current versions of file data.

Figure 4: DBFS Server Interfaces

6.1 Registering Filesystem Stores with DBFS

Server
As mentioned in the previous section, a DBFS filesystem store is

defined by one or more store-tables and is identified by a store-

name. Registration of a filesystem store to the DBFS server takes

place in three steps. The first step is to create a Store Provider

with implementations of the Content API methods. The second

step is to associate the Store Provider with the DBFS store-name.

The final step is to associate the store with a mount point or store-

mount. The store-mount is used to expose the DBFS filesystem

store to the filesystem application running on the client.

A filesystem store therefore gets defined as a four-attribute tuple

(store-name, store-provider, store-mount, and store-table). The

filesystem client accesses files or directories in underlying DBFS

stores using a full absolute pathname (a single string): such as

"/<store-mount>/<store-specific-path-name>". DBFS manages the

namespace and dispatch of end-user filesystem operations based

on pathnames.

The following example explains the flow of interfaces on a

„chmod‟ filesystem call {int chmod(const char *path, mode_t

mode)}, where path is "/<store-mount>/<store-specific-path-

name>”. The DBFS Content API provides an equivalent interface:

DBFS_CONTENT.chmod(<store-mount>/<store-specific-path-

name>, mode). From the store-mount, the store provider

DBFS_<sp> is identified, which inherits the interface as:

DBFS_<sp>.chmod(<store-specific-path-name>, mode, store-

table) and may implement as “update <store-table> set std_mode

= mode where std_pathname = <store-specific-path-name>”.

7. FILESYSTEM CLIENT
The DBFS client is built on the Filesystem in User Space (FUSE)

infrastructure, as demonstrated in Figure 5. FUSE [14] is a

framework for implementing filesystems outside the operating

system kernel in a separate protection domain in a user process.

The Fuse library interface closely resembles the in-kernel virtual

filesystem interface. The DBFS client is an OS user level client

that registers function callbacks with FUSE kernel module, which

get executed once the OS kernel issues a corresponding request.

The function callbacks within DBFS Linux Filesystem Client

receive standard filesystem calls from the FUSE kernel module,

translate them into the equivalent Content API interfaces and

transfer them over to the DBFS server using OCI connections.

The client interfaces have been implemented to scale with the

number of applications accessing the filesystem. The Linux

Filesystem Client dynamically maintains a pool of OCI

connections thereby avoiding creation of network connections on

every call. Use of write caching, read pre-fetching and load

balancing across a pool of database OCI network connections are

some of the other optimizations that remove client side latencies.

Figure 5: DBFS Linux Filesystem Client Architecture

The Linux Filesystem Client allows mounting DBFS on local

hosts, similar to a NFS mount. The client allows multiple mounts

of the same filesystem server on a single machine. Multiple clients

can run in an Oracle cluster environment that may share the same

database and therefore the same filesystem. Applications in the

client machines issue standard filesystem calls and commands.

The Linux Filesystem Client interfaces get invoked when file,

directory, or link pathnames associated with the kernel calls are

prefixed with the appropriate DBFS mounts.

The data flow from the client to the filesystem store is enumerated

below on the „chmod‟ example presented in Section 6.1.

1. Filesystem application issues a chmod: chmod

(/DBFS_mount/<store-mount>/<store-specific-path-name>,

mode)

2. DBFS client converts it to a Content API interface:

DBFS_CONTENT.chmod(/<store-mount>/<store-specific-

path-name>, mode) and transfers to the server

3. The DBFS server retrieves the Service Provider DBFS_<sp>

to select the appropriate store API and converts it to the

method: DBFS_<sp>.chmod(<store-specific-path-name>,

mode, <store-table>)

4. DBFS_<sp>.chmod(/<store-specific-path-name>, mode,

<store_table>) issues „update <store-table> set std_mode =

mode where std_pathname = <store-specific-path-name>‟

8. PRELIMINARY PERFORMANCE

EVALUATION
The motivation behind the introduction of an industry-strength

database filesystem had been the sub-optimal performance and

scalability of storage and access of files compared to filesystems.

The section presents a set of preliminary performance evaluation

of DBFS primarily focused on read and write operations of files

across various sizes. The experiments are conducted on a Sun

Oracle Database Machine [17], a state-of-the-art database SMP

server and storage cluster system introduced in 2009. The

experiment set has been designed to demonstrate and verify the

scale of throughput of file data storage and access achievable by

DBFS on a high-end server and storage system.

8.1 Objective
The performance evaluation comprises of three sets of

experiments with the following objectives. Firstly, throughput and

file read and write operations are evaluated on a single database

node to observe the scalability of DBFS on a multi-core SMP

machine. Once the concurrency configuration providing the

maximum scale is determined, the second set of experiments scale

out the operations over the entire cluster. The objective is to

observe whether DBFS scales out file storage and access over a

cluster of servers and shared storage.

The first and second sets of experiments are performed on an

empty filesystem store. The third set of experiments extends the

cluster-wide set, repeating them for a period to 12 hours. The

experiment set comprises of multiple iterations of write/read

operations followed by removal of stored files iterations

interleaved by removal of files and directories. The objective is to

observe and verify whether DBFS is able to reproduce high

performance in steady-state.

8.2 System Setup
Figure 6 illustrates the system configuration used in the

experiment. The hardware is a half-rack Sun Oracle Database

Machine [17] comprising of 4 database server nodes and 7

Exadata storage server nodes.

Each Sun Oracle Exadata Storage Server comprises of twelve 2

TB Serial Advanced Technology Attachment (SATA) disks that

provide up to 7 TB of uncompressed user data capacity, and up to

0.85 GB/second of raw data bandwidth. The database machine

uses a state of the art InfiniBand interconnect between the servers

and storage. An Exadata storage server has dual port Quad Data

Rate (QDR) InfiniBand connectivity for high availability. Each

InfiniBand link provides 40 Gigabits of bandwidth - many times

higher than traditional storage or server networks. The InfiniBand

network has the flexibility of a LAN network, with the efficiency

of a SAN. The same InfiniBand network also provides a high

performance cluster interconnect for the Oracle Database Real

Application Cluster (RAC) nodes. Industry standard Oracle The

database servers are equipped with two Intel Xeon (Nehalam)

dual-socket quad-core E5540 processors running at 2.53 GHz

processors, 72 GB RAM, four 146 GB SAS drives, dual port

InfiniBand Host Channel Adapter (HCA), four 1 Gb/second

Ethernet ports, and dual-redundant, hot-swappable power

supplies.

Figure 6. Sun Oracle Database Machine

8.3 Experiment Configuration
A single filesystem store was used for the scope of the

experiments. The store comprised of a single non-partitioned

database table. The table comprised of the mandatory filesystem

metadata columns, a single column of LOB data type, and zero

relational columns.

The SecureFiles segment associated with the filesystem store was

configured to be shared across all storage servers. The storage

disks were configured as raw block devices with Automatic

Storage Management. Incoming write operations were configured

to issue direct and asynchronous I/Os for the file data to the

underlying storage bypassing the database buffer cache.

Additional logging of file data was disabled as the writes were

configured for direct I/O. Data transformation options were

disabled on the SecureFiles segment. The minimum block size

was set to 8KB

The Oracle RDBMS contains a reference PL/SQL package,

DBFS_SFS, containing the implementations of the DBFS Content

API interfaces. Interfaces involving filesystem metadata

operations are implemented as transactionally managed

inserts/updates/deletes of file and directory records in the store

table. The read interface is implemented to return file data

consistent as of the current point in time.

The database filesystem client is used to mount DBFS on all four

server machines. The common Unix/Linux program „dd‟ is used

in the experiments to issue file copies from /dev/zero to DBFS

and from DBFS to /dev/null, thereby evaluating a more “pure”

DBFS-only storage and retrieval performance profile. The

experiments were configured to issue filesystem commands with

file pathnames referencing the same filesystem store from all four

servers.

8.4 Single Node Experiments
This subsection reports evaluations of scalability of reads and

writes operations on a single node. The set of experiments

perform file read and write operations with varying degrees of

concurrency and varying file sizes to observe DBFS scalability in

such environments. Seven experiments are performed, each

experiment writing/reading a certain file size. File sizes are varied

from 10KB, 100KB, 1MB, 10MB, 100MB, 1GB and 10GB

respectively.

8.4.1 10KB File Sizes
The experiment application initiates multiple simultaneous

threads, each thread performing a set of serial filesystem „dd‟

operations, each operation writing 10KB from /dev/zero to an

output file targeted to the DBFS filesystem store within the

database. The total number of files inserted in 1.6 millions. The

number of simultaneous threads is varied from 32 to 128 in steps

of 8. For each concurrency configuration, the number of files

written per thread is set as 1.6 million divided by the number of

simultaneous threads. Average throughput is measured using the

elapsed time for the entire application to reach completion. As

evident from figure 7, file writes scale up with the degree of

concurrency on a single database server node. However, the

workload becomes entirely CPU bound as the underlying physical

I/Os comprise of maximal 2 8KB contiguous data blocks, and

therefore saturates after the number is increased from 64 upwards.

The maximum throughput observed from the experiment is

59.6MB/sec or more than 6000 10KB files per second.

Once all files are stored in DBFS filesystem store, a read

application initiates multiple simultaneous threads, each thread

performing a set of serial filesystem dd commands, each command

issuing a 10KB read of an input file from the DBFS filesystem

store and writing to /dev/null. The number of simultaneous

threads is varied from 32 to 128 in steps of 8. The throughput

behavior is observed to be similar to that of file writes. The

throughput saturates after the number of threads increases from 64

onwards. The throughput saturates to 95.7 MB/sec or more than

9600 10KB files per second, as shown in figure 7.

Figure 7. Read and write throughput for 10KB file sizes

8.4.2 100KB File Sizes
The same application described in section 8.4.1 is reused for this

experiment, but with different parameters. The total number of

files inserted is 1 million. The number of threads is varied from 32

to 128 in steps of 8. As evident from figure 8, throughput of

writes scales up with the degree of concurrency on the server

machine. DBFS throughput for this specific workload still

remains entirely CPU bound, as the underlying physical I/Os

comprise of maximal 64 contiguous data blocks. Following a

scale up, throughput therefore saturates after the number of

processes is increased from 64. The throughput for the document

archiving application saturates around 346.3MB/sec, implying

data ingestion rate of more than 3200 100KB files per second.

Figure 8. Read and write throughput for 100KB file sizes

For file reads, the number of simultaneous threads is increased

from 64 to 128. The read throughput saturates from 64 threads

onwards to 454.2MB/sec implying more than 4600 100KB files

per second.

8.4.3 1MB to 100MB File Sizes
For 1MB file sizes, the experiment application writes a total of

240,000 files resulting in total ingestion of 234GB. The number

of threads is varied from 24 to 96 in steps of 8. For each

concurrency configuration, the number of files written per thread

is set as 240,000 divided by the number of simultaneous threads.

The same configuration is set for the read experiment following

the writes. It is observed from figure 9 that DBFS throughput

starts becoming I/O bound at lower degrees of concurrency and

saturates near the hardware limit of 1GB/sec. The throughput

saturates from concurrency levels of 32 onwards and maximizes at

920.4 MB/sec. The read operations in DBFS are also observed to

be I/O bound resulting in a throughput saturating at 931.6

MB/sec.

For 10MB file sizes experiment, the experiment application writes

a total of 24,000 files. The number of threads is varied from 12 to

48. Both DBFS read and write throughputs saturate around 970

MB/sec, very near to the hardware limit. The 100MB file sizes

experiment performs dd writes on 2400 files varying the degree of

concurrency from 8 to 32 in steps of 8. The write and read

throughputs are entirely I/O bound and saturate near 962 MB/sec,

as shown in figure 9.

As the file sizes increase, both read and write throughputs shift

from being CPU bound towards being I/O bound. Buffering

optimizations from SecureFiles Write Gather Cache leads to

allocation of more contiguous storage space resulting in larger I/O

requests that fully utilize the underlying storage bandwidth from a

single server machine.

Figure 9. Read and write throughputs for 1MB, 10MB, and

100MB file sizes.

8.4.4 1GB and 10GB File Sizes
The experiment application is the same described in the previous

subsections. However, the total number of files written and read is

set to 640 and 64 for 1GB and 10GB experiments, resulting in

total ingestion and retrieval of 640GB in both cases. Degree of

concurrency is varied from 4 to 16 in steps of 2. Similar to above

experiments, the number of files read and written is equally

distributed across the threads. The read and write throughputs

saturate towards the hardware limit of 1GB/sec from the

concurrency level of 6 itself and remains so as the levels are

increased, as demonstrated in figure 10.

Figure 10. Read and write throughputs for

1GB and 10GB file sizes.

8.5 Cluster-wide Experiments
Results from the previous subsection demonstrate that DBFS

performance scales with the degree of concurrency of filesystem

write and read operations in a single database server. To observe

whether DBFS performance scales out on a shared storage cluster-

wide system, multi-node experiments are conducted on two and

four database server nodes in the database machine.

The same experiment application described in subsection 8.4.1 is

issued from each individual database server. Experiments are

conducted on file sizes of 1MB and more as they involve more

hardware I/O bound operations. For each file size, the degree of

concurrency chosen per node is the one that generates the

maximum throughput in the single node experiments. The total

number of files written and read is scaled up with the number of

nodes for each file size. To summarize, the 1MB experiment

ingests and retrieves 240,000 files per node using 96 parallel

threads; the 10MB experiment ingests and retrieves 24,000 files

per node using 48 parallel threads; the 100MB experiment ingests

and retrieves 2400 files per node using 32 parallel threads; the

1GB experiment ingests and retrieves 640 files per node using 16

parallel threads; and, the 10GB experiment ingests and retrieves

64 files per node using 16 parallel threads.

As evident from figure 11, DBFS write and read throughputs scale

out with the number of database nodes across all workloads. Even

though a single DBFS filesystem store is shared across the DBFS

clients and server nodes and the filesystem store itself shares

underlying physical storage, free space management algorithms,

consistent read mechanism, and cluster–wide read sharing

contribute to the scale out of throughput. DBFS filesystem write

operations are driven with more than 3.4 GB/sec ingestion rate

while the reads generate a throughput of more than 3.5 GB/s

across the cluster.

To summarize, DBFS achieves more than 10TB/hr file ingestion

and retrieval rates in a four node database cluster on an empty

filesystem.

Figure 11. Cluster-wide scale out of file data operations

throughput

8.6 Steady-state Reproducibility Experiments
The next set of experiments is performed to observe whether

DBFS is capable to consistently reproduce such high throughputs

in a steady-state filesystem. This set of experiments extends on the

multi-node experiment application used in section 8.5. The multi-

node experiments performed for file sizes ranging from 1MB to

10GB are iterated multiple times. Between each iteration, all

inserted files are deleted through a single „rm –rf‟ command

targeted to the filesystem store.

The iterations are performed continuously for 12 hours to observe

the decay in throughput performance with time. Figure 12

demonstrates the rate of decay for all file sizes tested. The

throughput values reported are averaged over read and write

operations after each workload before removing the files. It is

observed that decay in throughput increases with the file size with

1MB file sizes demonstrating the least (1.8%) and 10GB sizes

demonstrating the greatest (9.3%). It is important to note that a

steady-state behavior that is eventually reached for every file size.

The observation can be explained in terms of filesystem

fragmentation. The probability of allocating bigger contiguous

chunks decreases with the number of iterations, at a rate faster

than the probability of allocating smaller contiguous ones.

Figure 12. Consistency of DBFS cluster-wide read/write

throughput

Although DBFS throughput for larger file sizes decays with time,

there is a steady-state behavior that is eventually reached. The

highest observed 9.3% decay after 12 hours of continuous

ingestion and deletion of files still implies more than 10TB/hr of

steady-state throughput of file read and write operations. The

results demonstrate the capability of Oracle DBFS to provide file

read and write throughput that consistently scales with the

underlying hardware system in a steady state environment.

8.7 Summary of Preliminary Evaluations
The preliminary results, summarized in Tables 1 and 2,

demonstrate the capability of Oracle Database Filesystem to break

the performance barrier across sizes ranging from tens of

kilobytes to tens of gigabytes that has been discouraging storage

of unstructured file-like content in databases.

It is observed that DBFS demonstrates scale up with the number

of filesystem read/write application processes on a single

database/filesystem server. For smaller file sizes, DBFS

throughput gets bound by CPU of the server, while for sizes

around IMB and larger; throughput scales up and gets bound by

the I/O capacity of the underlying storage system. On a cluster of

4 database servers of Sun Oracle Database Machine, DBFS scales

out to provide more than 10TB/hr throughput for filesystem write

operations and read operations. Furthermore, DBFS demonstrates

the capability to reproduce the scale out in a steady state

filesystem, consistently generating more than 10TB/hr cluster-

wide throughput under long-running filesystem read/write

applications.

Considering a single DBFS server being able to ingest an

equivalent of more than 8320 million 10KB small size files a

single day and a cluster of four such servers being able to ingest

an equivalent of 25 million 100MB large size files at the same

rate, the current set of performance results implies huge potential

for DBFS as the consolidated storage solution for the entire

spectrum of existing and future industry-strength content

management applications.

Table 1. Summary of preliminary DBFS evaluation (single

database server)

File

Size

No. of Files Aggregate Write

Throughput

(MB/s)

Aggregate Read

Throughput

(MB/s)

10 KB 1,600,000 59.6 95.7

100 KB 1,000,000 346.3 454.2

1 MB 240,000 920.4 931.6

10 MB 24,000 970.0 970.0

100 MB 2,400 962.0 962.0

1 GB 640 970.0 970.0

10 GB 64 970.0 970.0

Table 2. . Summary of preliminary DBFS evaluation (four

database servers)

File

Size

No. of Files Aggregate Write

Throughput

(MB/s)

Aggregate Read

Throughput

(MB/s)

1 MB 960,000 2897.6 3184.6

10 MB 96,000 3193.6 3503.1

100 MB 9,600 3334.2 3542.2

1 GB 2,560 3443.7 3594.8

10 GB 256 3450.1 3634.2

9. Conclusion
Content management applications across enterprises, internet,

research, and healthcare industries are generating volumes of data

at rates doubling year after year. More than eighty five percent of

such data volumes are unstructured or file-like in nature and the

rest comprise of accompanying relational content. Although the

database is a preferred choice for relational data storage, poor

performance of unstructured data storage and lack of filesystem

interfaces have deterred content management application

developers to use the database as a single storage solution for all

data. This may result in less than fifteen percent of all data stored

outside database management systems in the coming decades. The

paper introduces Oracle Database Filesystem, the latest filesystem

client-server architecture within the RDBMS kernel that allows

content management applications to transparently store and

organize files using standard filesystem interfaces, in the same

database that stores associated relational content. The server

component of DBFS is based on Oracle SecureFiles infrastructure

that provides high performance storage and access of unstructured

content in the database through POSIX-standard filesystem

interfaces, without compromising on database management

robustness features. The architecture opens the database to

existing and future content generating applications, offering a no-

compromise alternative to filesystems for unstructured data

storage.

A preliminary performance evaluation successfully demonstrates

the potential of Oracle DBFS to provide very high scalability of

files storage and access operations in massive data management

environments. Immediate future work on Oracle DBFS includes

efforts to conduct exhaustive performance evaluations on all kinds

of filesystem operations not limited to file data related ones using

standard filesystem benchmarks, and compare them against

existing traditional non-database network filesystems.

10. ACKNOWLEDGEMENTS
We are thankful to Mr. Juan Loaiza for giving us the opportunity

to employ the Sun Oracle Database Machine setup for the

preliminary performance evaluation. We also thank Kevin

Closson for assisting us with the hardware setup as well as

conducting the performance tests on DBFS. We acknowledge all

members of Oracle SecureFiles and Oracle DBFS virtual teams

for their contributions in the entire product lifecycle, from

brainstorming to product design, product development, and

quality assurance.

11. REFERENCES
[1] Lewis. M. Information 2.0. An EMC2 White Paper, 2008.

[2] Lallier, J. Storage Management in the Year 2010. Computer

Technology Review, September 2004.

[3] You Tube Fact Sheet. A YouTube White Paper, 2009.

[4] Facebook. http://www.facebook.com/ statistics, 2009.

[5] Sears, R., Ingen, C., Gray, J. To BLOB or not to BLOB:

Large object Storage in a database or a Filesystem?

Microsoft Research Technical Report, MSR-TR-2006-45,

2006.

[6] Gray, J. Greetings! From a Filesystem User. 4th USENIX

Conference on File and Storage Technologies, San

Francisco, CA, 2005.

[7] Carey, M. J., Dewitt, D. Of Objects and Databases: A

Decade of Turmoil. Proceedings of the 22nd Very Large Data

Bases Endowment, 3-14, 1996.

[8] Mukherjee, N., Aleti, B., Ganesh, A. et. al. Oracle

SecureFiles System. Proceedings of the 34th Very Large Data

Bases Endowment, 1(2), 1301-1312, 2008.

[9] Mukherjee, N., Ganesh, A., Kunchithapadam, K.,

Muthulingam, S. Oracle SecureFiles - A Filesystem

Architecture in Oracle Database Server. ICSOFT

(SE/MUSE/GSDCA), 60-63, 2008.

[10] Mukherjee, N., Ganesh, A. et. al. Oracle SecureFiles:

Prepared for the Digital Deluge.. Proceedings of the 35th

Very Large Data Bases Endowment, 2009.

[11] The NFS Version 4 Protocol. A Sun Solaris 10 White Paper,

2000.

[12] Lahiri, T., Srihari, V., Chan, W., Macnaughton, N.,

Chandrasekaran, S. Cache Fusion: Extending Shared-Disk

Clusters with Shared Caches, Proceedings of the 27th VLDB

conference, 2001.

[13] Cryan, M. Oracle Database Concepts. An Oracle White

Paper, 2003.

[14] Szeredi, M. Filesystem in USErspace.

http://fuse.sourceforge.net/.

[15] Rajamani, R. Oracle Total recall/ Flashback Data Archive.

An Oracle White Paper, June 2007.

[16] Manning, P. Automatic Storage Management technical

Overview. An Oracle Technical White Paper, 2003.

[17] Weiss, R. A Technical Overview of the Sun Oracle Exadata

Storage Server and Database Machine. An Oracle Technical

White Paper, 2009.

[18] Biggar, H. Experiencing Data De-Duplication: Improving

Efficiency and Reducing Capacity Requirements. A

SearchStorage.com White Paper, Feb 2007.

