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ABSTRACT 

Modern enterprise, web, and multimedia applications are 

generating unstructured content at unforeseen volumes in the form 

of documents, texts, and media files. Such content is generally 

associated with relational data such as user names, location tags, 

and timestamps. Storage of unstructured content in a relational 

database would guarantee the same robustness, transactional 

consistency, data integrity, data recoverability and other data 

management features consolidated across files and relational 

contents. Although database systems are preferred for relational 

data management, poor performance of unstructured data storage, 

limited data transformation functionalities, and lack of interfaces 

based on filesystem standards may keep more than eighty five 

percent of non-relational unstructured content out of databases in 

the coming decades. 

We introduce Oracle Database Filesystem (DBFS) as a 

consolidated solution that unifies state-of-the-art network 

filesystem features with relational database management ones. 

DBFS is a novel shared-storage network filesystem developed in 

the RDBMS kernel that allows content management applications 

to transparently store and organize files using standard filesystem 

interfaces, in the same database that stores associated relational 

content. The server component of DBFS is based on Oracle 

SecureFiles, a novel unstructured data storage engine within the 

RDBMS that provides filesystem like or better storage 

performance for files within the database while fully leveraging 

relational data management features such as transaction atomicity, 

isolation, read consistency, temporality, and information lifecycle 

management.  

We present a preliminary performance evaluation of DBFS that 

demonstrates more than 10TB/hr throughput of filesystem read 

and write operations consistently over a period of 12 hours on an 

Oracle Exadata Database cluster of four server nodes. In terms of 

file storage, such extreme performance is equivalent to ingestion 

of more than 2500 million 100KB document files a single day. 

The set of initial results look very promising for DBFS towards 

becoming the universal storage solution for both relational and 

unstructured content. 

1. INTRODUCTION 
Content volumes are growing rapidly in both enterprise and 

consumer spaces as processors, storage devices, and physical 

hardware are growing in scale. According to an independent study 

[1], more than 500 exabytes of enterprise content had been 

ingested across all computer systems in 2008 alone. Analyst 

estimates demonstrate that more than eighty five percent of such 

content is unstructured in nature, which is accompanied by fifteen 

percent of relational content [2]. Besides enterprise applications, 

consumer multimedia services, higher availability of Internet 

access in emerging countries, and social networks are steadily 

contributing to the digital deluge. In 2009, more than 200,000 

videos were uploaded per day using YouTube application [3]. 

More recent statistics from Facebook reveal that more than 60 

million status updates are posted in a day, and more than 3 billion 

photographs are uploaded per month [4]. Estimates predict more 

than 20 quadrillion unstructured data objects will be created in the 

year 2011 alone [2]. 

Although database systems are equipped with more advanced and 

secure data management features such as transactional atomicity, 

consistency, durability, manageability, and availability, lack of 

high performance and throughput scalability for storage of 

unstructured objects, and absence of standard filesystem-based 

application program interfaces have been cited as primary reasons 

for content management providers to often prefer existing 

filesystems or devise filesystem-like solutions for unstructured 

objects [5][6].  

Over the last two decades, several database researchers have 

envisioned an architectural unification of databases and 

filesystems. In 1996, Dr. David DeWitt had presented his vision 

on the confluence of Objects and Databases allowing large 

enterprises reaping the benefits of families of products that offer 

integrated solutions functioning scalably and robustly by the end 

of 2006 [7].  In his presentation at FAST 2005, Dr. Jim Gray 

mentioned that “Filesystem should borrow ideas from DB” [6].   

We introduce Oracle Database Filesystem (DBFS) as a 

consolidated solution achieving the much-anticipated architectural 

unification through a cross-pollination of ideas from filesystem 

research to relational databases. DBFS is a pioneering shared-

storage network filesystem client-server architecture built on 

Oracle SecureFiles [8][9], the high-performance unstructured data 

storage architecture within the Oracle RDBMS [10]. SecureFiles 

was primarily designed to provide filesystem-like or better storage 

throughput across all file sizes and types that scales with the scale 

of content-generating applications as well as with underlying 

hardware and storage systems. Besides performance and 

scalability aspects, several filesystem-like data transformation 

capabilities such as de-duplication, compression and encryption 

have been incorporated in SecureFiles to provide maximal data 

storage utilization and security. DBFS provides a client-server 

filesystem abstraction over SecureFiles allowing content 

management developers to perform typical network filesystem 

operations within the RDBMS using standard filesystem 

interfaces besides structured data management using standard 

database interfaces. Similar to traditional network filesystems, 



Oracle Database Filesystem provides a transparent abstraction of a 

shared network filesystem as a local filesystem to end-user 

applications. Storage of unstructured data within the Oracle 

RDBMS extends the rich set of transactional, consistency, 

durability and temporal data management features to existing 

filesystem-based tools and applications.  

The remainder of the paper is organized as follows. An overview 

of DBFS architecture is provided in section 2. Sections 3 to 7 

detail the individual components of the DBFS architecture. 

Section 8 presents a preliminary performance evaluation of DBFS 

on filesystem storage and access operations using POSIX-

standard filesystem commands. The paper is concluded in section 

9.  

2. ORACLE DBFS ARCHITECTURE 
The architecture of Oracle DBFS comprises of filesystem client 

and server components, similar to traditional NFS [11]. Figure 1 

demonstrates the client-server architecture of Oracle DBFS. 

 

 

Figure 1. Oracle DBFS: Shared-Storage Filesystem within the 

Database 

 

The RDBMS server [13] is the filesystem server for DBFS. The 

server consists of one or more filesystem stores that are accessed 

by a set of interfaces called DBFS Content API. A filesystem store 

is characterized by one or more database objects such as tables, 

table partitions, indexes, etc. Besides relational columns, these 

database objects consist of columns dedicated to filesystem 

metadata attributes and LOB datatypes. Oracle RDBMS allows 

these database objects to share storage in a multi-node distributed 

environment [12] thereby providing shared-storage filesystem 

capabilities to DBFS. File metadata operations, such as creation 

and listing of directories, results in modifications of tuples in 

these database objects. The SecureFiles architecture provides 

support for storage and access of file data as LOB datatypes in 

database storage devices using highly optimized algorithms that 

scale performance up on single multi-core processor systems as 

well as scale out on distributed systems.  

Besides providing high performance, SecureFiles provides 

advanced file data transformation capabilities that include 

filesystem compression to optimize utilization of cache and 

storage, automated de-duplication of files to prevent redundant 

file storage, and Transparent Data Encryption (TDE) semantics to   

both relational and file data. In addition to these advanced 

filesystem features, Oracle SecureFiles infrastructure was 

designed to provide several RDBMS capabilities, such as 

atomicity, consistency, isolation and durability semantics on 

unstructured data management operations, along with more 

advanced database features, such as consistent backup, point in 

time recovery, XML indexing, XML queries, temporal 

management and query ability of unstructured and relational data 

through complete historization of data [15]. DBFS filesystem 

stores inherit all the capabilities provided by SecureFiles storage 

infrastructure. The rich set of data transformation and 

management options allows applications to create filesystem 

stores with different combinations of such options.  

The DBFS Content API provides PL/SQL interfaces that 

correspond to the complete set of POSIX filesystem access 

primitives such as create file, open, read, write, create directory, 

list directory, change directory, etc. Each filesystem store is 

characterized by application-specific implementations equivalent 

to these primitives within the DBFS Content API interfaces. A 

server-specific mount-point is associated with each filesystem 

store. Operations on files with pathnames relative to a server-

specific mount-point are performed using the functionalities 

implemented for the corresponding filesystem store on database 

objects characterizing the store.  

The DBFS client component utilizes Filesystem in User Space 

(FUSE) [14] kernel module that exposes filesystem calls from the 

OS kernel as function callbacks in user space. The client 

component transforms the function callbacks to the equivalent 

PL/SQL interfaces provided by Content API and places the calls 

to the RDBMS server over OCI or Oracle Call Interface 

connections. DBFS filesystem is mounted on the client machine 

with a client-specific mount-point. POSIX-based filesystem 

commands that are relative to the client-specific mount-point are 

converted to Content API functions. Based on the server-specific 

mount-point specified in the Content API interfaces, the target 

filesystem store is identified. The Content API therefore provides 

Linux VFS-like capabilities of mounting of multiple filesystems 

in a single database server. Besides a filesystem client , DBFS 

allows access of relational, filesystem metadata and file data 

directly through database clients such as PL/SQL, JDBC and OCI. 

To summarize, the DBFS client server architecture provides the 

complete set of interfaces that transform filesystem calls from the 

client to database calls to RDBMS server. These calls are targeted 

to individual filesystem stores that employ store-specific 

interfaces to perform operations on database objects associated 

with them. Filesystem operations that involve storage and access 

of files are managed through the Oracle SecureFiles storage 

architecture. Each of the components will be discussed in detail in 

the subsequent sections. 



3. SECUREFILES 
SecureFiles [8][9] was introduced in 2007 as a high performance 

and scalable storage architecture for unstructured data in the 

database, breaking the performance barrier of unstructured data 

management in a database. File data manipulation and retrieval 

operations in Oracle DBFS filesystem are handled by the 

SecureFiles infrastructure. Figure 2 demonstrates the architecture 

of SecureFiles. The major components can be categorized based 

on their contributions in providing filesystem-like throughput and 

scalability, maximizing storage space utilization, and providing 

secure data management. The following subsection enumerates 

the major components of SecureFiles architecture.  

 

 

Figure 2. SecureFiles Architecture. 

3.1 Performance and Scalability  
The write gather cache, inode management, database space 

management and automatic storage management components are 

responsible for ensuring the scalability of file manipulation and 

retrieval throughput performance. 

3.1.1 Write Gather Cache 
The Write Gather Cache (WGC) is a subset of the database cache 

that can buffer large amounts of file data during write operations. 

The writes are checkpointed to the underlying storage system 

during file close operations and buffer overflows. This buffering 

of in-flight data allows for large contiguous storage space 

allocation leading to large contiguous storage I/O operations with 

reduced disk seek costs.  

3.1.2 Inode Management 
The inode management layer is responsible for initiating on-disk 

storage and access operations on files. During file checkpointing 

following write operations, the inode manager requests free space 

from underlying storage systems to initiate asynchronous I/O 

operations.  Filesystem-like inode data structures are created and 

managed for individual DBFS files to maintain the array of 

contiguous physical offsets and lengths. This prevents single 

points of contention in concurrent environments during update, 

delete and append operations on files. Metadata maintained in the 

inode can remain extremely compact because the space 

management layer provides the support to return a set of variable 

sized chunks to store the data being written to disk. The metadata 

management structures can therefore scale to map terabyte-sized 

objects very efficiently. SecureFiles inode management layer 

contributes in further scale-up of read operations through an 

intelligent pre-fetching mechanism. The layer keeps track of 

access patterns and intelligently pre-fetches data before the 

request is actually made. Read latency is reduced by the overlap 

of network roundtrip with the disk I/O thereby scaling up read 

throughputs to greater extents. 

3.1.3 Free Space Management 
The free space management is one of the major components 

responsible for scalability of SecureFiles throughput during file 

manipulation operations. The layer dedicates one or more 

SecureFiles segment to a filesystem store database object, each 

segment being a set of contiguous blocks of underlying shared 

storage space. File operations such as writes, updates, appends 

and deletes result in allocation of logical free space from 

SecureFiles segments or de-allocating used space from files back 

to SecureFiles segments keeping the real density and seek 

amortization trend in mind.  

The space management layer supports allocation of variable sized 

chunks. With SecureFiles objects being cached in the Write 

Gather Cache, the space management layer is able to meet larger 

space requests from the inode manager through more contiguous 

layout on disk, therefore providing more scalable read and write 

access. 

The free space in SecureFiles segments is shared across all the 

instances in a distributed Oracle Real Application Cluster 

environment. To achieve maximum scalability in a distributed 

environment, a dedicated background space monitor process on 

each database server node performs load balancing of free space 

across the cluster. Each active database server node creates its 

private in-memory space dispenser shared by processes running 

on the same node but never across different nodes. As a result, 

free space allocations requested by server processes are met by the 

local database node, thereby reducing cluster wide network and 

storage traffic. The design of the in-memory dispenser allows 

space allocation operations to scale with the degree of 

concurrency on a single database node. Private in-memory space 

dispensers in individual nodes prevent the need for server 

processes to communicate across nodes in a shared-storage system 

to maintain free space metadata coherence. The design therefore 



alleviates scalability bottlenecks of space allocation operations as 

the number of nodes in a cluster is scaled up.   

Operations such as full overwrites / rewrites, updates and deletes 

of files in the DBFS server follow „copy-on-write‟ semantics 

resulting in de-allocation of space previously occupied by the 

offsets affected by the operation. Users can set retention policies 

for such old data versions in their filesystem stores. Based on the 

retention policies, the de-allocated space is reused for future 

allocations once the retention period is over. Such „copy-on-write‟ 

semantics allow extension of database properties to file data, as 

explained in Section 4. 

3.1.4 Automatic Storage System Management 
 Automatic Storage System Management [16] assists 

manageability of underlying physical storage. SecureFiles 

extensively uses this feature to guarantee maximum I/O 

performance from raw asynchronous I/O operations across the 

storage system. The feature allows spreading the SecureFiles 

segment layout evenly across all available storage resources to 

scale performance and maximize storage utilization across the 

entire storage system. ASM provides mirroring options for 

protection against disk failures. Data Transformation Components 

3.2 Memory and Storage Utilization 
Data transformation components in Oracle SecureFiles allow for 

optimal utilization of storage space by the DBFS filesystem 

stores.  

3.2.1 De-duplication 
When a DBFS filesystem store has de-duplication [18] enabled, 

SecureFiles automatically detects duplicate files, and stores only a 

single physical copy on disk, thereby minimizing space usage. A 

secure hash is generated for a subset of the file data (prefix hash) 

and also for the whole file (full hash). During streaming writes, 

once generated, the prefix hash is compared to a set of prefix 

hashes stored in an index. If there is a prefix match, then the file 

associated with the original prefix hash (master version) is read 

and byte-by-byte comparison is performed across the buffered 

data and the master version. At the end of the write, if the full 

hash matches and the entire file matches on a byte-by-byte basis, 

then a reference pointer directing to the master version is 

maintained in the filesystem store. The component therefore 

contributes in scaling up throughput of applications that are 

required to store multiple instances of files, by preventing 

redundant physical I/O on the underlying storage system. 

3.2.2 Compression 
When compression option is enabled in a filesystem store, 

buffered writes from the write gather cache is compressed when it 

exceeds a configured boundary threshold. These compressed data 

chunks are referred to as compression subunits. Multiple 

contiguous compression subunits are encompassed within a larger 

unit. Compression is performed piecewise in such a way that 

efficient random access of large files is possible. Compression not 

only results in significant savings in storage but also improves 

performance by reducing I/O sizes, database buffer cache 

requirements, data logging for media recovery, and encryption 

overheads.  

3.3 Secure File Data Management 
SecureFiles uses Transparent Data Encryption (TDE) syntax for 

encryption of files along with the accompanying relational 

metadata. File buffers are encrypted/ decrypted on database block 

size units using one of several encryption algorithms, namely, 

Triple Data Encryption Standard with a 168-bit key size, 

Advanced Encryption Standard with a 128 bit key size, Advanced 

Encryption Standard with a 192-bit key size, or Advanced 

Encryption Standard with a 256-bit key size. 

4. EXTENDING DATABASE FEATURES 

TO FILES 
This subsection provides details of the some of the database 

features supported by Oracle SecureFiles infrastructure that are 

automatically inherited by Oracle DBFS. 

4.1.1 Transaction Atomicity 
Storage of files within Oracle RDBMS guarantees transactional 

atomicity for file and relational data operations in Oracle DBFS. 

Relational data in filesystem stores is managed using the 

transaction semantics associated with the relational database 

kernel. The database kernel implements these semantics by 

generating undo records for all data and metadata operations. The 

undo records are stored as first-class objects within the database 

and are used to roll back database operations during failures 

thereby maintaining transactional consistency in the database. 

Similar semantics are used for guaranteeing transactional 

atomicity of filesystem metadata manipulation operations in 

Oracle DBFS.  

File data operations in DBFS undergo „copy on write‟ semantics 

for overwrite and large update operations. Such a semantic 

alleviates the requirement to store previous object images, partial 

or entire, for rollback purposes. When a transaction aborts, the 

relational metadata associated with SecureFile objects, and space 

metadata roll back using the undo records. As a result, the 

SecureFile object locators point to the previous image of the 

inode metadata blocks that in turn point to the previous versions 

of the objects. Because of „copy-on-write‟ semantics for large 

updates and overwrites, the rollback is not required to perform 

additional I/O to restore the previous object images. As a result, 

transaction recovery becomes independent of the sizes of the 

changes on the SecureFile objects. For smaller updates, 

SecureFile objects undergo in-place updates with traditional 

relational transaction undo, therefore avoiding unnecessary 

fragmentation. The transaction atomicity semantics guarantee 

transaction level consistency between files and their associated 

relational content in Oracle DBFS. 

4.1.2 Read Consistency 
Oracle RDBMS supports multi-version read consistency for 

relational data. Queries retrieve data by re-creating snapshots of 

modified data blocks as of the time of their issuances.  The 

snapshots or versions of relational data blocks are created through 

application of undo records that were generated during data 

manipulation operations. While accompanying relational and 

filesystem metadata in DBFS filesystem use the above techniques 

to achieve read consistency, files stored as SecureFiles objects 

achieve this making use of „copy-on-write‟ semantics. SecureFiles 

space management component maintains chunk metadata 

associated with object updates and deletes. The space freed during 



the update and delete operations map to old versions of data. The 

space management component retains such freed up space for a 

user-specified amount of time. Depending on the expiration of the 

retention period, the space management component either retains 

such space or reuses them for future allocations. This technique 

guarantees users of Oracle DBFS to retrieve the most read-

consistent version of file content along with the associated file 

and relational metadata at a point in time within the retention 

period.  

4.1.3 Temporality 
The read consistency mechanism described in the previous 

subsection is extended by the Oracle Flashback framework [15]  

to provide capabilities to query, retrieve, and recreate relational as 

well as unstructured data consistent as of any point in time in the 

past, ranging from several minutes to several years. Being first 

class RDBMS objects, the framework is automatically inherited 

by DBFS file and relational data management. Content 

management applications can set retention periods to SecureFiles 

segments in DBFS filesystem stores. If not explicitly specified by 

a user, previous versions of files are retained as long as their 

accompanying filesystem and relational metadata are retained. 

This ensures consistency of DBFS file data retrieval at any point 

in time as long as the accompanying filesystem and relational data 

can be retrieved. SecureFiles with Flashback Archive provide the 

option for content management applications to create tamper-

proof temporal snapshot stores. Such stores can support creation 

and retrieval of critical content snapshots and accompanying 

relational data consistent as of several years in the past, extremely 

relevant to applications in content security and compliance areas. 

5. FILESYSTEM STORES 
As mentioned in section 2, a filesystem store is a container for 

files and relational content within the RDBMS. Physically, a 

filesystem store consists of one or more dedicated tables, referred 

to as store-tables, along with SecureFiles segments. The layout of 

a filesystem store is demonstrated through Figure 3.  

 

Figure 3: An example filesystem store. 

The store-table allows applications to define optional columns 

that contain relational metadata associated with the file, e.g., 

location information associated with photograph image files. 

Besides optional user-defined relational columns, they contain 

mandatory scalar columns to store standard, well-defined 

filesystem-specific metadata based on the POSIX standard 

namespace, such as STD_PATHANME, STD_PARENT, etc. 

Directories do not have a well-defined length and stores are free 

to set this property to zero, null, or any other value they choose), 

std_modification_time, and so on. 

Besides the above columns, a store-table consists of one or more 

attributes of the LOB datatype. For a row in the store table that 

corresponds to a file record, the LOB datatype column in the row 

contains reference pointer to the file content that is stored and 

accessed from the associated SecureFiles segment. The 

SecureFiles segment is shared by all file records contained in the 

associated store-table. Storage parameters of SecureFiles segment 

can be configured to enable different flavors to filesystem stores. 

For example, a filesystem store targeted towards personal 

documents may enable SecureFiles compression for storage 

utilization benefits while a filesystem store targeted towards 

mission-critical content may enable SecureFiles encryption.   

Logically, a filesystem store is characterized by a store-name that 

contains a collection of files, each identified by a unique absolute 

path name (that is, a "/" followed by one or more "component 

names" separated by "/"). Some stores may implement only a flat 

namespace, others might implement "directories" (or "folders") 

implicitly, while still others may implement a comprehensive 

filesystem-like collection of entities: hierarchical directories, files, 

symbolic links (or just links), hard links (or references), and so 

on, along with a rich set of relational metadata (or "properties") 

associated with files. 

DBFS allows creation of multiple stores within the same database. 

The RDBMS allows database transactions, read consistency and 

other ACID properties to span relational, filesystem metadata and 

file data in a filesystem store. The store-table being a database 

object allows access of relational, filesystem metadata and file 

data through database client interfaces such as PL/SQL, JDBC 

and OCI. 

6. FILESYSTEM SERVER  
The Oracle Database Filesystem Server consists of a set of 

interfaces within the database that provide filesystem-like 

abstraction of DBFS stores to the clients. Figure 4 demonstrates 

the components of the DBFS server. The topmost component of 

the server interface is called the DBFS ContentAPI (CAPI). The 

DBFS ContentAPI is a collection of interfaces that correspond 

corresponding to POSIX-standard filesystem access primitives 

such as create, open, read, write, list directory, change directory, 

etc. The ContentAPI defines a PL/SQL interface for every 

POSIX-standard filesystem call interface. The complete set of 

interfaces defined by the ContentAPI is used by the filesystem 

client to access underlying filesystem stores. 

The DBFS Store Provider API, DBFS SPI, follows the Content 

API. The SPI allows registration of several user-defined PL/SQL 

packages or Store Providers, each of which inherits and 

implements the set of PL/SQL interfaces defined by the CAPI. 

The DBFS ContentAPI implements a VFS abstraction based on 

store providers and the SPI. Store providers manage the low-level 

details of data storage and retrieval and can do so in arbitrary way. 

This allows applications to create multiple instances of the same 

filesystem interface through multiple store providers. For 



example, a read-only application may implement the PL/SQL 

interface for write system call to return an error message, while a 

read-write application would implement the same interface to 

actually store the data in the SecureFiles segment. A temporal 

filesystem application may choose to implement the read interface 

to retrieve file data consistent as of a fixed time in the past, while 

a traditional filesystem application would implement the same to 

retrieve the most current versions of file data.    

 

 

Figure 4: DBFS Server Interfaces 

 

6.1 Registering Filesystem Stores with DBFS 

Server 
As mentioned in the previous section, a DBFS filesystem store is 

defined by one or more store-tables and is identified by a store-

name. Registration of a filesystem store to the DBFS server takes 

place in three steps. The first step is to create a Store Provider 

with implementations of the Content API methods. The second 

step is to associate the Store Provider with the DBFS store-name. 

The final step is to associate the store with a mount point or store-

mount. The store-mount is used to expose the DBFS filesystem 

store to the filesystem application running on the client.   

A filesystem store therefore gets defined as a four-attribute tuple 

(store-name, store-provider, store-mount, and store-table). The 

filesystem client accesses files or directories in underlying DBFS 

stores using a full absolute pathname (a single string): such as 

"/<store-mount>/<store-specific-path-name>". DBFS manages the 

namespace and dispatch of end-user filesystem operations based 

on pathnames. 

The following example explains the flow of interfaces on a 

„chmod‟ filesystem call {int chmod(const char *path, mode_t 

mode)}, where path is "/<store-mount>/<store-specific-path-

name>”. The DBFS Content API provides an equivalent interface: 

DBFS_CONTENT.chmod(<store-mount>/<store-specific-path-

name>, mode). From the store-mount, the store provider 

DBFS_<sp> is identified, which inherits the interface as:  

DBFS_<sp>.chmod(<store-specific-path-name>, mode, store-

table) and may implement as “update <store-table> set std_mode 

= mode where std_pathname = <store-specific-path-name>”. 

7. FILESYSTEM CLIENT 
The DBFS client is built on the Filesystem in User Space (FUSE) 

infrastructure, as demonstrated in Figure 5. FUSE [14] is a 

framework for implementing filesystems outside the operating 

system kernel in a separate protection domain in a user process. 

The Fuse library interface closely resembles the in-kernel virtual 

filesystem interface. The DBFS client is an OS user level client 

that registers function callbacks with FUSE kernel module, which 

get executed once the OS kernel issues a corresponding request.  

The function callbacks within DBFS Linux Filesystem Client 

receive standard filesystem calls from the FUSE kernel module, 

translate them into the equivalent Content API interfaces and 

transfer them over to the DBFS server using OCI connections. 

The client interfaces have been implemented to scale with the 

number of applications accessing the filesystem. The Linux 

Filesystem Client dynamically maintains a pool of OCI 

connections thereby avoiding creation of network connections on 

every call. Use of write caching, read pre-fetching and load 

balancing across a pool of database OCI network connections are 

some of the other optimizations that remove client side latencies.  

 

 

Figure 5: DBFS Linux Filesystem Client Architecture 

 

The Linux Filesystem Client allows mounting DBFS on local 

hosts, similar to a NFS mount. The client allows multiple mounts 

of the same filesystem server on a single machine. Multiple clients 

can run in an Oracle cluster environment that may share the same 

database and therefore the same filesystem.  Applications in the 

client machines issue standard filesystem calls and commands. 

The Linux Filesystem Client interfaces get invoked when file, 

directory, or link pathnames associated with the kernel calls are 

prefixed with the appropriate DBFS mounts.  

The data flow from the client to the filesystem store is enumerated 

below on the „chmod‟ example presented in Section 6.1. 

1. Filesystem application issues a chmod: chmod 

(/DBFS_mount/<store-mount>/<store-specific-path-name>, 

mode) 

2. DBFS client converts it to a Content API interface: 

DBFS_CONTENT.chmod(/<store-mount>/<store-specific-

path-name>, mode) and transfers to the server 



3. The DBFS server retrieves the Service Provider DBFS_<sp> 

to select the appropriate store API and converts it to the 

method: DBFS_<sp>.chmod(<store-specific-path-name>, 

mode, <store-table>) 

4. DBFS_<sp>.chmod(/<store-specific-path-name>, mode, 

<store_table>) issues „update <store-table> set std_mode = 

mode where std_pathname = <store-specific-path-name>‟ 

8. PRELIMINARY PERFORMANCE 

EVALUATION 
The motivation behind the introduction of an industry-strength 

database filesystem had been the sub-optimal performance and 

scalability of storage and access of files compared to filesystems. 

The section presents a set of preliminary performance evaluation 

of DBFS primarily focused on read and write operations of files 

across various sizes. The experiments are conducted on a Sun 

Oracle Database Machine [17], a state-of-the-art database SMP 

server and storage cluster system introduced in 2009. The 

experiment set has been designed to demonstrate and verify the 

scale of throughput of file data storage and access achievable by 

DBFS on a high-end server and storage system.   

8.1 Objective 
The performance evaluation comprises of three sets of 

experiments with the following objectives. Firstly, throughput and 

file read and write operations are evaluated on a single database 

node to observe the scalability of DBFS on a multi-core SMP 

machine. Once the concurrency configuration providing the 

maximum scale is determined, the second set of experiments scale 

out the operations over the entire cluster. The objective is to 

observe whether DBFS scales out file storage and access over a 

cluster of servers and shared storage.  

The first and second sets of experiments are performed on an 

empty filesystem store. The third set of experiments extends the 

cluster-wide set, repeating them for a period to 12 hours. The 

experiment set comprises of multiple iterations of write/read 

operations followed by removal of stored files iterations 

interleaved by removal of files and directories. The objective is to 

observe and verify whether DBFS is able to reproduce high 

performance in steady-state. 

8.2 System Setup 
Figure 6 illustrates the system configuration used in the 

experiment. The hardware is a half-rack Sun Oracle Database 

Machine [17] comprising of 4 database server nodes and 7 

Exadata storage server nodes. 

Each Sun Oracle Exadata Storage Server comprises of twelve 2 

TB Serial Advanced Technology Attachment (SATA) disks that 

provide up to 7 TB of uncompressed user data capacity, and up to 

0.85 GB/second of raw data bandwidth. The database machine 

uses a state of the art InfiniBand interconnect between the servers 

and storage. An Exadata storage server has dual port Quad Data 

Rate (QDR) InfiniBand connectivity for high availability. Each 

InfiniBand link provides 40 Gigabits of bandwidth - many times 

higher than traditional storage or server networks. The InfiniBand 

network has the flexibility of a LAN network, with the efficiency 

of a SAN. The same InfiniBand network also provides a high 

performance cluster interconnect for the Oracle Database Real 

Application Cluster (RAC) nodes. Industry standard Oracle The  

database servers are equipped with two Intel Xeon (Nehalam) 

dual-socket quad-core E5540 processors running at 2.53 GHz 

processors, 72 GB RAM, four 146 GB SAS drives, dual port 

InfiniBand Host Channel Adapter (HCA), four 1 Gb/second 

Ethernet ports, and dual-redundant, hot-swappable power 

supplies. 

 

 

Figure 6. Sun Oracle Database Machine 

 

8.3 Experiment Configuration 
A single filesystem store was used for the scope of the 

experiments. The store comprised of a single non-partitioned 

database table. The table comprised of the mandatory filesystem 

metadata columns, a single column of LOB data type, and zero 

relational columns.  

The SecureFiles segment associated with the filesystem store was 

configured to be shared across all storage servers. The storage 

disks were configured as raw block devices with Automatic 

Storage Management. Incoming write operations were configured 

to issue direct and asynchronous I/Os for the file data to the 

underlying storage bypassing the database buffer cache. 

Additional logging of file data was disabled as the writes were 

configured for direct I/O. Data transformation options were 

disabled on the SecureFiles segment. The minimum block size 

was set to 8KB 

The Oracle RDBMS contains a reference PL/SQL package, 

DBFS_SFS, containing the implementations of the DBFS Content 

API interfaces. Interfaces involving filesystem metadata 

operations are implemented as transactionally managed 

inserts/updates/deletes of file and directory records in the store 

table. The read interface is implemented to return file data 

consistent as of the current point in time.  

The database filesystem client is used to mount DBFS on all four 

server machines. The common Unix/Linux program „dd‟ is used 

in the experiments to issue file copies from /dev/zero to DBFS 

and from DBFS to /dev/null, thereby evaluating a more “pure” 

DBFS-only storage and retrieval performance profile. The 

experiments were configured to issue filesystem commands with 



file pathnames referencing the same filesystem store from all four 

servers. 

8.4 Single Node Experiments 
This subsection reports evaluations of scalability of reads and 

writes operations on a single node. The set of experiments 

perform file read and write operations with varying degrees of 

concurrency and varying file sizes to observe DBFS scalability in 

such environments. Seven experiments are performed, each 

experiment writing/reading a certain file size. File sizes are varied 

from 10KB, 100KB, 1MB, 10MB, 100MB, 1GB and 10GB 

respectively. 

8.4.1 10KB File Sizes 
The experiment application initiates multiple simultaneous 

threads, each thread performing a set of serial filesystem „dd‟ 

operations, each operation writing 10KB from /dev/zero to an 

output file targeted to the DBFS filesystem store within the 

database. The total number of files inserted in 1.6 millions. The 

number of simultaneous threads is varied from 32 to 128 in steps 

of 8. For each concurrency configuration, the number of files 

written per thread is set as 1.6 million divided by the number of 

simultaneous threads. Average throughput is measured using the 

elapsed time for the entire application to reach completion. As 

evident from figure 7, file writes scale up with the degree of 

concurrency on a single database server node. However, the 

workload becomes entirely CPU bound as the underlying physical 

I/Os comprise of maximal 2 8KB contiguous data blocks, and 

therefore saturates after the number is increased from 64 upwards. 

The maximum throughput observed from the experiment is 

59.6MB/sec or more than 6000 10KB files per second. 

Once all files are stored in DBFS filesystem store, a read 

application initiates multiple simultaneous threads, each thread 

performing a set of serial filesystem dd commands, each command 

issuing a 10KB read of an input file from the DBFS filesystem 

store and writing to /dev/null. The number of simultaneous 

threads is varied from 32 to 128 in steps of 8. The throughput 

behavior is observed to be similar to that of file writes. The 

throughput saturates after the number of threads increases from 64 

onwards. The throughput saturates to 95.7 MB/sec or more than 

9600 10KB files per second, as shown in figure 7. 

 

 

Figure 7. Read and write throughput for 10KB file sizes  

8.4.2 100KB File Sizes 
The same application described in section 8.4.1 is reused for this 

experiment, but with different parameters. The total number of 

files inserted is 1 million. The number of threads is varied from 32 

to 128 in steps of 8. As evident from figure 8, throughput of 

writes scales up with the degree of concurrency on the server 

machine. DBFS throughput for this specific workload still 

remains entirely CPU bound, as the underlying physical I/Os 

comprise of maximal 64 contiguous data blocks. Following a 

scale up, throughput therefore saturates after the number of 

processes is increased from 64. The throughput for the document 

archiving application saturates around 346.3MB/sec, implying 

data ingestion rate of more than 3200 100KB files per second. 

 

 

Figure 8. Read and write throughput for 100KB file sizes 

For file reads, the number of simultaneous threads is increased 

from 64 to 128. The read throughput saturates from 64 threads 

onwards to 454.2MB/sec implying more than 4600 100KB files 

per second. 

8.4.3 1MB to 100MB File Sizes 
For 1MB file sizes, the experiment application writes a total of 

240,000 files resulting in total ingestion of 234GB. The number 

of threads is varied from 24 to 96 in steps of 8. For each 

concurrency configuration, the number of files written per thread 

is set as 240,000 divided by the number of simultaneous threads. 

The same configuration is set for the read experiment following 

the writes. It is observed from figure 9 that DBFS throughput 

starts becoming I/O bound at lower degrees of concurrency and 

saturates near the hardware limit of 1GB/sec. The throughput 

saturates from concurrency levels of 32 onwards and maximizes at 

920.4 MB/sec. The read operations in DBFS are also observed to 

be I/O bound resulting in a throughput saturating at 931.6 

MB/sec. 

For 10MB file sizes experiment, the experiment application writes 

a total of 24,000 files. The number of threads is varied from 12 to 

48. Both DBFS read and write throughputs saturate around 970 

MB/sec, very near to the hardware limit. The 100MB file sizes 

experiment performs dd writes on 2400 files varying the degree of 

concurrency from 8 to 32 in steps of 8. The write and read 

throughputs are entirely I/O bound and saturate near 962 MB/sec, 

as shown in figure 9. 

As the file sizes increase, both read and write throughputs shift 

from being CPU bound towards being I/O bound. Buffering 



optimizations from SecureFiles Write Gather Cache leads to 

allocation of more contiguous storage space resulting in larger I/O 

requests that fully utilize the underlying storage bandwidth from a 

single server machine. 

 

 

 

 

Figure 9. Read and write throughputs for 1MB, 10MB, and 

100MB file sizes. 

 

8.4.4 1GB and 10GB File Sizes 
The experiment application is the same described in the previous 

subsections. However, the total number of files written and read is 

set to 640 and 64 for 1GB and 10GB experiments, resulting in 

total ingestion and retrieval of 640GB in both cases. Degree of 

concurrency is varied from 4 to 16 in steps of 2. Similar to above 

experiments, the number of files read and written is equally 

distributed across the threads. The read and write throughputs 

saturate towards the hardware limit of 1GB/sec from the 

concurrency level of 6 itself and remains so as the levels are 

increased, as demonstrated in figure 10.  

 

 

 

Figure 10. Read and write throughputs for  

1GB and 10GB file sizes. 

 

8.5 Cluster-wide Experiments 
Results from the previous subsection demonstrate that DBFS 

performance scales with the degree of concurrency of filesystem 

write and read operations in a single database server. To observe 

whether DBFS performance scales out on a shared storage cluster-

wide system, multi-node experiments are conducted on two and 

four database server nodes in the database machine.  

The same experiment application described in subsection 8.4.1 is 

issued from each individual database server. Experiments are 

conducted on file sizes of 1MB and more as they involve more 

hardware I/O bound operations. For each file size, the degree of 

concurrency chosen per node is the one that generates the 

maximum throughput in the single node experiments. The total 

number of files written and read is scaled up with the number of 

nodes for each file size. To summarize, the 1MB experiment 

ingests and retrieves 240,000 files per node using 96 parallel 

threads; the 10MB experiment ingests and retrieves 24,000 files 

per node using 48 parallel threads; the 100MB experiment ingests 

and retrieves 2400 files per node using 32 parallel threads; the 

1GB experiment ingests and retrieves 640 files per node using 16 

parallel threads; and, the 10GB experiment ingests and retrieves 

64 files per node using 16 parallel threads.  



As evident from figure 11, DBFS write and read throughputs scale 

out with the number of database nodes across all workloads. Even 

though a single DBFS filesystem store is shared across the DBFS 

clients and server nodes and the filesystem store itself shares 

underlying physical storage, free space management algorithms, 

consistent read mechanism, and cluster–wide read sharing 

contribute to the scale out of throughput. DBFS filesystem write 

operations are driven with more than 3.4 GB/sec ingestion rate 

while the reads generate a throughput of more than 3.5 GB/s 

across the cluster.  

To summarize, DBFS achieves more than 10TB/hr file ingestion 

and retrieval rates in a four node database cluster on an empty 

filesystem. 

 

 

 

Figure 11. Cluster-wide scale out of file data operations 

throughput 

  

8.6 Steady-state Reproducibility Experiments  
The next set of experiments is performed to observe whether 

DBFS is capable to consistently reproduce such high throughputs 

in a steady-state filesystem. This set of experiments extends on the 

multi-node experiment application used in section 8.5. The multi-

node experiments performed for file sizes ranging from 1MB to 

10GB are iterated multiple times. Between each iteration, all 

inserted files are deleted through a single „rm –rf‟ command 

targeted to the filesystem store.  

The iterations are performed continuously for 12 hours to observe 

the decay in throughput performance with time. Figure 12 

demonstrates the rate of decay for all file sizes tested. The 

throughput values reported are averaged over read and write 

operations after each workload before removing the files. It is 

observed that decay in throughput increases with the file size with 

1MB file sizes demonstrating the least (1.8%) and 10GB sizes 

demonstrating the greatest (9.3%). It is important to note that a 

steady-state behavior that is eventually reached for every file size. 

The observation can be explained in terms of filesystem 

fragmentation. The probability of allocating bigger contiguous 

chunks decreases with the number of iterations, at a rate faster 

than the probability of allocating smaller contiguous ones.  

 

 

Figure 12. Consistency of DBFS cluster-wide read/write 

throughput 

 

Although DBFS throughput for larger file sizes decays with time, 

there is a steady-state behavior that is eventually reached. The 

highest observed 9.3% decay after 12 hours of continuous 

ingestion and deletion of files still implies more than 10TB/hr of 

steady-state throughput of file read and write operations. The 

results demonstrate the capability of Oracle DBFS to provide file 

read and write throughput that consistently scales with the 

underlying hardware system in a steady state environment. 

8.7 Summary of Preliminary Evaluations 
The preliminary results, summarized in Tables 1 and 2, 

demonstrate the capability of Oracle Database Filesystem to break 

the performance barrier across sizes ranging from tens of 

kilobytes to tens of gigabytes that has been discouraging storage 

of unstructured file-like content in databases.  

It is observed that DBFS demonstrates scale up with the number 

of filesystem read/write application processes on a single 

database/filesystem server. For smaller file sizes, DBFS 

throughput gets bound by CPU of the server, while for sizes 

around IMB and larger; throughput scales up and gets bound by 

the I/O capacity of the underlying storage system. On a cluster of 

4 database servers of Sun Oracle Database Machine, DBFS scales 

out to provide more than 10TB/hr throughput for filesystem write 

operations and read operations. Furthermore, DBFS demonstrates 

the capability to reproduce the scale out in a steady state 

filesystem, consistently generating more than 10TB/hr cluster-

wide throughput under long-running filesystem read/write 

applications.  

Considering a single DBFS server being able to ingest an 

equivalent of more than 8320 million 10KB small size files a 

single day and a cluster of four such servers being able to ingest 



an equivalent of 25 million 100MB large size files at the same 

rate, the current set of performance results implies huge potential 

for DBFS as the consolidated storage solution for the entire 

spectrum of existing and future industry-strength content 

management applications. 

 

Table 1. Summary of preliminary DBFS evaluation (single 

database server) 

File 

Size 

No. of Files Aggregate Write 

Throughput 

(MB/s) 

Aggregate Read 

Throughput 

(MB/s) 

10 KB 1,600,000 59.6 95.7 

100 KB 1,000,000 346.3 454.2 

1 MB 240,000 920.4 931.6 

10 MB 24,000 970.0 970.0 

100 MB 2,400 962.0 962.0 

1 GB 640 970.0 970.0 

10 GB 64 970.0 970.0 

 

Table 2. . Summary of preliminary DBFS evaluation (four 

database servers) 

File 

Size 

No. of Files Aggregate Write 

Throughput 

(MB/s) 

Aggregate Read 

Throughput 

(MB/s) 

1 MB 960,000 2897.6 3184.6 

10 MB 96,000 3193.6 3503.1 

100 MB 9,600 3334.2 3542.2 

1 GB 2,560 3443.7 3594.8 

10 GB 256 3450.1 3634.2 

 

9. Conclusion 
Content management applications across enterprises, internet, 

research, and healthcare industries are generating volumes of data   

at rates doubling year after year. More than eighty five percent of 

such data volumes are unstructured or file-like in nature and the 

rest comprise of accompanying relational content. Although the 

database is a preferred choice for relational data storage, poor 

performance of unstructured data storage and lack of filesystem 

interfaces have deterred content management application 

developers to use the database as a single storage solution for all 

data. This may result in less than fifteen percent of all data stored 

outside database management systems in the coming decades. The 

paper introduces Oracle Database Filesystem, the latest filesystem 

client-server architecture within the RDBMS kernel that allows 

content management applications to transparently store and 

organize files using standard filesystem interfaces, in the same 

database that stores associated relational content. The server 

component of DBFS is based on Oracle SecureFiles infrastructure 

that provides high performance storage and access of unstructured 

content in the database through POSIX-standard filesystem 

interfaces, without compromising on database management 

robustness features. The architecture opens the database to 

existing and future content generating applications, offering a no-

compromise alternative to filesystems for unstructured data 

storage.  

A preliminary performance evaluation successfully demonstrates 

the potential of Oracle DBFS to provide very high scalability of 

files storage and access operations in massive data management 

environments. Immediate future work on Oracle DBFS includes 

efforts to conduct exhaustive performance evaluations on all kinds 

of filesystem operations not limited to file data related ones using 

standard filesystem benchmarks, and compare them against 

existing traditional non-database network filesystems. 
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